

Most influential factors affecting CO₂ emissions in fisheries

Dadi Kristofersson Professor of Economics University of Iceland

GHG emissions from animal production

Source: MacLeod et al 2020

Carbon intensity

Source: MacLeod et al 2020

Development of catch and emissions

Icelandic fisheries

- Among top 20 fishing nations in the world by quantity
- Multi species fishery
- Quota regulated since 1984
- Mostly industrial and very consolidated
- TAC regulated by harvest rule
- Very profitable

Iceland's story

Stock size development

Icelandic fishing fleet- GRT

Factors that might affect carbon intensity in fishing

- Management system
- Gear
- Vessel type
- Technology
- Carbon pricing
- Stock size

How much does each factor contribute?

Study focus

- Focus on the Icelandic demersal fishing by fleet segment
- Study period 1997 to 2018
- Quantity aggregation based on cod equivalents
- Carbon intensity based on kg CO2 eq. per kg catch in cod equivalent

- Emission data from the Icelandic Environmental Agency
- Input, output and price data from Statistics Iceland
- Stock size data from Icelandic Marine Research Institute

Development of carbon intensity

Change over the period

	1997	2015	
	to	to	
	2000	2018	Change
Weighted average of all demersal fisheries	1.47	0.89	-39.5%
Boats <10 GRT	1.21	0.71	-41.4%
Boats 10 to 200 GRT	1.15	0.63	-45.1%
Boats >200 GRT	1.16	0.58	-49.5%
Fresh fish trawlers	2.03	1.03	-49.2%
Freezer trawlers	1.51	0.97	-35.7%

 We estimate the relationship between emissions and fishing using an implicit production function derived from:

$$\max_{y,x} \{p'y - w'x\}$$

S.t.
$$g(y, x, z, e, \overline{y}) \le 0$$

$$z = z_0$$

$$y \le \overline{y}$$

y is output (regulated by a quota y), x is input, z are environmental factors and e are emissions and p and w are prices

Statistical results

			Total		
Gear type	Stock size	Trend	quota	Fuel price	Fish price
Passive	-0,97	0,0009	0,96	-0,44	0,50
	(-3 <i>,</i> 45)	(0,07)	(-57,81)	(-8 <i>,</i> 03)	(-4,27)
Active	-0,95	-0,0216	0,87	-0,13	0,44
	(-2,20)	(-1,21)	(-20,56)	(-1,53)	(-2,44)

t-values in parenthesis

Figure 2d. Fresh fish trawlers

UNIVERSITY OF ICELAND FACULTY OF ECONOMICS

oon intensity and stock size

Figure 2b. Vessels 10<200 GRT

3

3

Figure 2e. Freezer trawlers

Figure 2c. Vessels >200 GRT

Figure 2f. Average for all fleet segments

Conclusion

- There has been a dramatic reduction in carbon intensity in the demersal fishery in Iceland
- It is most clearly related to stock size and scale
- Carbon pricing has also affected emissions
- Technology has played a minor role (why?)
- Nations can reduce emissions, increase output and improve profitability by improving fisheries

management

