Nýsköpun & neytendur Consumers & Products

Vinnsla & virðisaukning Value Chain & Processing

Erfðir & eldi Genetics & Aquaculture Líftækni & lífefni Biotechnology & Biomolecules

Mælingar & miðlun Analysis & Consulting

Öryggi & umhverfi Food Safety & Environment

SSS Prediction Workshop

Paw Dalgaard Anna Kristín Daníelsdóttir Steinar B. Aðalbjörnsson

Öryggi og umhverfi

Skýrsla Matís 12-10 Apríl 2010

ISSN 1670-7192

FINAL REPORT

SSS PREDICTION WORKSHOP on Seafood shelf-life and safety prediction

Matís project No.: 6025-1966

A one-day workshop

14th January 2010 at Matís, Vínlandsleið 12, IS-113 Reykjavík, Iceland.

Organised in collaboration between the Aquatic Microbiology and Seafood Hygiene, National Food Institute (DTU Food), Technical University of Denmark and Division of Food Safety & Environment, Matis, Iceland

by

- Dr. Paw Dalgaard, Senior scientist at Aquatic Microbiology and Seafood Hygiene, DTU Food, Denmark
- Dr. Anna Kristín Daníelsdóttir, Dir. Food safety & Environment at Matís, Iceland
- Steinar B. Aðalbjörnsson, Marketing Director at Matís, Iceland

Skýrsluágrip Matís ohf Icelandic Food and Biotech R&D

Report summary

Titill / Title	SSS PREDICTION Náms	skeið / SSS PREDICTION	WORKSHOP		
Höfundar / Authors	Paw Dalgaard, Anna Kr	istín Daníelsdóttir, Steind	ır B. Aðalbjörnsson		
Skýrsla / Report no.	12-10	Útgáfudagur / Date:	29.04.2010		
Verknr. / project no.	6025-1966				
Styrktaraðilar / funding:					
Ágrip á íslensku:	Námskeið í notkun á sp	áforritum í sjávarútvegi:	SSS (Seafood Spoilage		
	and Safety) Prediction	version 3.1 2009	(http://sssp.dtuaqua.dk/),		
	Combase (www.comb	base.cc) and Pathog	en Modeling forrit		
	(http://pmp.arserrc.gov/P	MPOnline.aspx). Kenna	ri er Dr. Paw Dalgaard		
	frá Tækniháskólanum í l	Danmörku (DTU) og fer	kennslan fram á ensku.		
	Forritið nýtist vísindamö	nnum, yfirvöldum og iðn	aði í sjávarútvegi.		
	-				
Lykilorð á íslensku:	Spáforrit, sjávarútvegur, fæðuöryggi, Listeria mor	námskeið, geymsluþol E aocytogens	SB reglugerðir,		
Summary in English:	Workshop on the practical use of computer software to manage seafood				
	quality and safety. It includes presentations and hands-on computer				
	exercises to demonstrate how available software can be used by industry,				
	authorities and scientists within the seafood sector. Examples with fresh				
	fish, shellfish and ready-to-eat seafood (smoked and marinated products)				
	are included in the workshop. Special attention is given to: (i) the effect				
	of storage temperature and modified atmosphere packing on shelf-life and				
	(ii) management of Lis	teria monocytogens acc	ording to existing EU-		
	regulations (EC 2073/20	05 and EC 1441/2007) a	and new guidelines from		
	the Codex Alimentarius Commission. The presentations included in the				
	workshop are given in	English by Paw Dalga	ard from the Technical		
	University of Denmark. Participants will use their own laptop computers				
	for the PC-exercises incl	luded in the workshop. I	nstruction for download		
	of freeware will be mai	iled to the participants	prior to the start of the		
	workshop.	r ····································			
English keywords:	Prediction software, seat	food quality management	, food safety, storage,		

EU regulations, Listeria monocytogens

TABLE OF CONTENT

1. INTRODUCTION 1
Icelandic1
English1
2. MATERIAL & METHODS
Software and documents 2
Teacher and organizers2
Participants 2
3. RESULTS
4. DISCUSSION & CONCLUSIONS
5. ACKNOWLEDGEMENTS
6. REFERENCES

1. INTRODUCTION

Icelandic

Markmiðið var halda námskeið í notkun á spáforritum í sjávarútvegi: SSS (Seafood Spoilage and Safety) Prediction version 3.1 2009 (http://sssp.dtuaqua.dk/), Combase (www.combase.cc) and Pathogen Modeling (http://pmp.arserrc.gov/PMPOnline.aspx) forrit. Kennari var Dr. Paw Dalgaard frá Tækniháskólanum í Danmörku (DTU) og fór kennslan fram á ensku. Forritið nýtist vísindamönnum, yfirvöldum og iðnaði í sjávarútvegi. Alls voru 11 þátttakendur á námskeiðinu.

English

The workshop focused on the practical use of computer software to manage seafood quality and safety. It included presentations and hands-on computer exercises to demonstrate how available software can be used by industry, authorities and scientists within the seafood sector. Examples with fresh fish, shellfish and ready-to-eat seafood (smoked and marinated products) were included in the workshop. Special attention was given to: (i) the effect of storage temperature and modified atmosphere packing on shelf-life and (ii) management of *Listeria monocytogens* according to existing EU-regulations (EC 2073/2005 and EC 1441/2007) and new guidelines from the Codex Alimentarius Commission. The presentations were given by Paw Dalgaard from the Technical University of Denmark. Participants used their own laptop computers for the PC-exercises included in the workshop. A total of 11 scientists participated in the workshop.

2. MATERIAL & METHODS

Software and documents

Software used at the SSS PREDICTION WORKSHOP on Seafood shelf-life and safety prediction:

- Seafood Spoilage and Safety Predictor (SSSP) version 3.1 from August 2009.
- Combase (www.combase.cc).
- Pathogen Modelling (http://pmp.arserrc.gov/PMPOnline.aspx).

See also the attached Annex 1 "Workshop Agenda and documents -140110-Reykjavik-Iceland".

Teacher and organizers

- **Teacher:** Dr. Paw Dalgaard, Seafood & Predictive Microbiology (Research group), Section for Aquatic Microbiology & Seafood Hygiene at the Technical University of Denmark (DTU Food).
- Organisers: Dr. Anna Kristín Daníelsdóttir and Steinar B. Aðalbjörnsson at Matís, Iceland.
- Date and location: 14th January 2010 at Matís ohf., Vínlandsleið 12, IS-113 Reykjavík, Iceland.

Participants

- 1. Erlingur Brynjúlfsson, erlingur@controlant.com 38.000.- Greitt
- 2. Guðrún E. Gunnarsdóttir, gudrune@syni.is 38.000.- Greitt
- 3. Guðrún Ólafsdóttir, go@hi.is 38.000.- Greitt
- 4. Leó Már Jóhannsson, leo@opseafood.com 38.000.- Greitt

- 5. Tómas Hafliðason, tomash@hi.is 38.000.- Greitt
- 6. Árni Rafn Rúnarsson, arnir@matis.is 38.000.- Greitt
- 7. Helene L. Lauzon, helene@matis.is 38.000.- Greitt
- 8. Hrólfur Sigurðsson, hrolfur@matis.is 38.000.- Greitt
- 9. Magnea Karlsdóttir, magneag@matis..is 38.000.- Greitt
- 10. Nguyen Van Minh, minh@matis.is 38.000.- Greitt
- 11. María Guðjónsdóttir, mariag@matis.is 38.000.- Greitt

Total IKr. 418.000 Thereof DTU IKr. 209.000 and IKr. 209.000 Matís

3. RESULTS

The one day workshop was very successful. Meals and all practical matter were well in place and made it easier to conduct the workshop. The feedback received from the "evaluation" sheets distributed at the end of the workshop was positive. The participants found the workshop well organized, relevant and practical.

4. DISCUSSION & CONCLUSIONS

The workshop was very successful and as a result, more workshops will be organized in Iceland in the near future. Also, further cooperation opportunities were identified between Matis and DTU Food on joint national, Nordic and European projects.

5. ACKNOWLEDGEMENTS

Thanks to the administrative staff of Matis ohf. for a good job on the practical matters.

6. REFERENCES

See Annex 1

8.45 - 9.00Registration9.00 - 9.10Welcome and opening9.10 - 10.30Shelf-life prediction – effect of temperature. Presentation and PC exercises using the SSSP software10.30 - 10.45Coffee break10.45 - 12.00Predicting growth and inactivation of bacteria in seafood. Presentation and PC exercises using SSSP and other freeware12.00 - 13.00Lunch13.00 - 14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	Time	Торіс
9.00 -9.10Welcome and opening9.10 -10.30Shelf-life prediction – effect of temperature. Presentation and PC exercises using the SSSP software10.30 -10.45Coffee break10.45 -12.00Predicting growth and inactivation of bacteria in seafood. Presentation and PC exercises using SSSP and other freeware12.00 -13.00Lunch13.00 -14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.00 -14.15Coffee break14.15 -15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 -16.00Evaluation and close of the workshop	8.45 - 9.00	Registration
9.10 - 10.30Shelf-life prediction – effect of temperature. Presentation and PC exercises using the SSSP software10.30 - 10.45Coffee break10.45 - 12.00Predicting growth and inactivation of bacteria in seafood. Presentation and PC exercises using SSSP and other freeware12.00 - 13.00Lunch13.00 - 14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.00 - 14.15Coffee break14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	9.00 - 9.10	Welcome and opening
10.30 - 10.45Coffee break10.45 - 12.00Predicting growth and inactivation of bacteria in seafood. Presentation and PC exercises using SSSP and other freeware12.00 - 13.00Lunch13.00 - 14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.00 - 14.15Coffee break14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	9.10 - 10.30	Shelf-life prediction – effect of temperature. Presentation and PC exercises using the SSSP software
10.45 - 12.00Predicting growth and inactivation of bacteria in seafood. Presentation and PC exercises using SSSP and other freeware12.00 - 13.00Lunch13.00 - 14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.00 - 14.15Coffee break14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	10.30 - 10.45	Coffee break
12.00 - 13.00Lunch13.00 - 14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.00 - 14.15Coffee break14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	10.45 - 12.00	Predicting growth and inactivation of bacteria in seafood. Presentation and PC exercises using SSSP and other freeware
13.00 - 14.00Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning14.00 - 14.15Coffee break14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	12.00 - 13.00	Lunch
14.00 - 14.15Coffee break14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning Listeria monocytogenes in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	13.00 - 14.00	Seafood safety prediction 1. Presentation and PC exercises concerning histamine formation and histamine fish poisoning
14.15 - 15.45Seafood safety prediction 2. Presentation and PC exercises concerning Listeria monocytogenes in ready-to-eat seafood15.45 - 16.00Evaluation and close of the workshop	14.00 - 14.15	Coffee break
15.45 - 16.00Evaluation and close of the workshop	14.15 - 15.45	Seafood safety prediction 2. Presentation and PC exercises concerning <i>Listeria monocytogenes</i> in ready-to-eat seafood
	15.45 - 16.00	Evaluation and close of the workshop

Shelf-life prediction – effect of temperature

Paw Dalgaard

Seafood & Predictive Microbiology (Research group) Section for Aquatic Microbiology & Seafood Hygiene pad@aqua.dtu.dk

DTU Food National Food Institute

Shelf-life prediction – effect of temperature

- DTU
- Shelf-life of food determination by sensory evaluation
- Storage temperature effect on shelf-life
- Relative rate of spoilage (RRS)
 - Definition
 - RRS-models for different types of food
- Shelf-life prediction and time-temperature integration
 - Examples using the SSSP software
- Seafood Spoilage and Safety Predictor (SSSP) software
 - PC Exercises

Sensory changes and shelf-life –

Shelf-life of seafood is always determined by sensory evaluation:

• Torry method: Scale from 10 to 1

Quality index method(QIM): Several attributes are evaluated

Sum of points from 0 to e.g. 30

DTU Food

Sensory changes and shelf-life – an example with fresh fish

Simplified Torry scheme

		Grade		Score
	No off-odour/flavour	I	Odour/flavour characteristic of species, very fresh, seaweedy	10
				9
Acceptable				8
-			Loss of odour/flavour	7
			Neutral	6
	Slight off-odours/flavour	Π	Slight off-odours/flavours such as	5
			mousy, garlic, bready, sour, fruity, rancid	4
	Lim	it of acc	ceptability	
	, ,		Strong off-odours/flavours	3
Reject	Severe off-odour/flavour	III	such as stale cabbage, NH_3 ,	2
			H_2S or sulphides	1

Shewan et al. 1953

Sensory changes and shelf-life

an example with fresh fish

Quality index method (QIM) – simple scheme

Quality	Point	
General appearance	Surface appearance	0 - 3
	Skin	0 – 1
	Slime	0 – 3
	Stiffness	0 – 1
Eyes	Clairity	0 – 2
	Shape or pupil	0 – 2
Gills	Colour	0 – 2
	Smell	0 – 3
	Slime	0 – 2
Flesh colour	Open surfaces	0 – 2
Blood	In throat cut	0 – 2
Sum of demerit points		0 – 23

DTU Food

Bremner 1985; www.qim-eurofish.com/

5/38

DTU

Storage temperature – effect on shelf-life

	% 0	f samples or i	refrigerators	
Temp. (⁰ C)	Denmark ^a	Portugal ^b	Sweden ^c	USA ^d
< 2	20	?	?	5-41
2 - 5	37	22	40	40-56
5 - 10	36	66	50	8-54
> 10	7	12	10	< 2

a) Olsen (1996). Regional Veterinary and Food Control Authority, Copenhagen

b) Azevedo (2005). Food Control, 16, 121-124

c) Lindblad & Boysen (2004). National Food Administration, Rapport 14

d) Godwin et al. (2007). Food Prot. Trends. 27, 168-173

Temperature of food can vary substantially during distribution and it is important to determine <u>the effect of</u> variable storage temperatures

Storage temperature – effect on shelf-life

Temperature (° C)	Shelf-life (days)	Relative rate of spoilage (RRS)
-3.0	25	0.48
-1.5	17	0.72
0	12	1.0
5	5	2.3
10	3	4.0
15	2	6.3

Example with fresh fish from cold water

• Important effect of superchilling below 0°C

 Regular refrigerators often operate at +5°C (or higher) – at 0°C shelf-life of fresh fish is more than twice as long

• The <u>overall effect of a chill chain</u> from harvest/processing to the consumer must be considered

DTU Food

7/38

DTU

=

Relative rate of spoilage (RRS)

RRS: Shelf-life at T_{ref} (°C) divided by shelf-life at T °C

 $RRS(T^{\circ}C) = \frac{Shelf - life(T_{ref}^{\circ}C)}{Shelf - life(T^{\circ}C)} \iff Shelf - life(T^{\circ}C) = \frac{Shelf - life(T_{ref}^{\circ}C)}{RRS(T^{\circ}C)}$

Shelf-life can be predicted at different temperatures when:

- 1. Shelf-life at a single constant temperature is known
- 2. RRS at different temperatures are known (RRS model)

Spencer & Baines (1964), Olley & Ratkowsky (1973)

Storage temperature – effect on RRS

DTU Food

DTU

DTU

Empirical models for relative rates of spoilage

Exponential RRS model:

$$RRS = \frac{Shelf - life \ at \ T_{ref}}{Shelf - life \ at \ T} = Exp\left[a \times (T - T_{ref})\right]$$

Arrhenius RRS model:

$$RRS = Exp\left[\frac{E_A}{R} \times (\frac{1}{(T+273)} - \frac{1}{T_{ref} + 273})\right]$$

Square-root RRS model:

RRS =
$$\left(\frac{T - T_{min}}{T_{ref} - T_{min}}\right)^2$$
; $T_{min} = -10^{\circ}C - > \sqrt{RRS} = 1 + 0.1 \times T^{\circ}C$

Dalgaard (2002) 10/38

DTU Food

Storage temperature - effect on shelf-life

Shelf-life at variable storage temperatures

DTU =

DTU

Example: Fresh fish with shelf-life of 12 days at 0°C

Timo	Temperature profile	and remaining shelf-life
Time	Example 1	Example 2
3 days	0°C	- 2°C
3 days	+ 2°C	+ 2°C
12 hours	+10°C	+ 4°C
2 days	+ 3°C	+ 3°C
Total 9 E davia	Remaining s	shelf-life at 0°C
<u>10181 0.5 0895</u>	? days	? days

- Is it possible to store the products one more day at 2°C?
- Is it possible to store the products three more days 2°C?

Shelf-life at variable storage temperature

Example: Fresh fish with shelf-life of 12 days at 0°C

Timo	Temperature prof	ile and remaining shelf-life
	Example 1	Example 2
3 days	0°C	- 2°C
3 days	+ 2°C	+ 2°C
12 hours	+10°C	+ 4°C
2 days	+ 3°C	+ 3°C
Total 9 E davia	Remainin	g shelf-life at 0°C
<u>101al 0.0 uays</u>	None	1-2 days
	10 m 40 40 40 40 40 40 40 40 40 40	Purpopulation of the second se
DTU Food	RSL at 5% RSL at 10% Tenperature profile	30rage period (ditys) - RSL # 아신 - RSL # 5인 - RSL # 10인 - Temperature profile

	Seafood Spoilage and Safety Predictor
File	e Options Help
Tir	me-Temperature Integration Software
	Seafood Spoilage and Safety Predictor (SSSP)
	Relative rate of spoilage (RRS) models
	Fresh seafood from temperate waters
	Square-root spoilage model
	Fresh seafood from tropical waters
	Exponential model for spoilage of fresh tropical seafood
	Cold-smoked salmon
	 Sliced and vaccum-packed cold-smoked salmon
	Cooked and brined shrimps
	Cooked and brined MAP shrimps
	BRS models with user-defined temperature characteristics
	Comparison of observed and predicted RRS data
	Calculation of values for accuracy factors
	 Microbial spoilage models (MSM)
	Histamine formation models
	Listeria monocytogenes in chilled seafood
	🗄 - Listeria monocytogenes and lactic acid bacteria (LAB)

DTU Food

http://sssp.dtuaqua.dk

DTU

				etyin		
A PE CO	RRS model :	Square-root	spoilage mod	el	? 🔀	
	i 🗾 🔚 🗾 🕐 🖡	<u>}</u>	۴F		°C	
	Product characteristic	s				
		Storage temperature	e (°C): 0		Apply	
		Shelf-life (days): 12			
	Equivale	ent shelf-life at 0 °C ((days): 12		lear	
	Shelf-life prediction for					
	Constant temperature	Series of constan	t temperatures Temp	perature profiles from	logger data	
	Prediction of remaining	ng shelf-life for a serie	es of constant storage	temperatures		
	Temperal	ure (°C)	Storag	e time (hours)	48 +	
	- Remaining shelf-life (hours)				
	Temp. (*C)	Time (h)	0 °C (h)	5 °C (h)	10 °C (h)	
	0	0	288	128	72	
	0	72	216	96	54	
	2	72	112.3	49.9	28.1	
	10	12	64.3	28.6	16.1	
	3	48	-16.8	-7.5	-4.2	
	<				>	

ile	Options Help
10	
ïme	e-Temperature Integration Software
∎ S	eafood Spoilage and Safety Predictor (SSSP)
E	Relative rate of spoilage (RRS) models
	Fresh seafood from temperate waters
	Square-root spoilage model
	Fresh seafood from tropical waters
	Exponential model for spoilage of fresh tropical seafood
	Cold-smoked salmon
	 Sliced and vaccum-packed cold-smoked salmon
	Cooked and brined shrimps
	Cooked and brined MAP shrimps
	RRS models with user-defined temperature characteristics RRS models
	Comparison of observed and predicted RRS data
	 Calculation of values for accuracy factors
G	Microbial spoilage models (MSM)
G	Histamine formation models
0	Listeria monocytogenes in chilled seafood
G	Listeria monocytogenes and lactic acid bacteria (LAB)

DTU Food

http://sssp.dtuaqua.dk

17/38

Shelf-life prediction for foods with known temperature sensitivity (RRS models)	
RRS models with user-defined temperature characteristics	
Shelf Hig prediction for.	
Product characteristics Constant temperatures Series of constant temperatures Temperature profiles from	
Product characteristics	
Storage temperature ("C) 2 Apply	
Sheli-life (davs) 8	
Selection of models and temperature characteristics	
Make comparison 🔽 Model 1 Model 2	
Model (select with soroll bar and highlight Arthenius Arthenius Arthenius Septemential Septemential Septemential Section 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Temperature characteristics 0.15 1/°C 0.09 1/°C	
Equivalent shell-life at 0 °C (days) 10.8 3.58	
Shell-life prediction for:	
Product characteristics Constant temperatures Series of constant temperatures Temperature profile	es from 4
Model 1 Model 2	
Storage temperature (*C) : 10 10	
Predicted shelf-life (days): 2.4 3.9	10/00
DTU Food	18/38

Storage temperature – effect on RRS

DTU Food

Dalgaard & Jørgensen (2000) 19/38

The effect of temperature profiles recorded by data loggers can be predicted using SSSP

DTU Food

21/38

DTU

=

Numerous dataloggers are available to record the temperature of food during storage and distribution

• A challenge for handling of temperature data

DTU Food

To facilitate evaluation of product temperature profiles SSSP includes a module that allow data to be imported by copy and paste from spreadsheets (like MS Excel)

DTU Food

http://sssp.dtuaqua.dk

23/38

Introduction to SSSP

Using SSSP

- <u>Relative rate of spoilage (RRS) models and general information about SSSP</u>
- Microbial spoilage models (MSM)
- · Options and zoom functions available in SSSP to modify graphs

Relative rate of spoilage (RRS) models

- Introduction
- Fresh seafood from temperate waters
- Fresh seafood from tropical waters
- <u>Cold-smoked salmon</u>
- <u>Cooked and brined shrimps</u>
- RRS models with user-defined temperature characteristics
- Comparison of observed and predicted RRS data

DTU Food

http://sssp.dtuaqua.dk

Seafood Spoilage and Safety Predictor (SSSP)

SSSP has been available since January 1999

- New versions in 2004, 2005, 2008 and 2009 (v. 3.1 in August)
- SSSP is used by more than 4000 people/institutions from 105 different countries:

 Production and distribution of seafood 	: 30 %
 Seafood inspection 	: 20 %
– Research	: 20 %
– Teaching	: 15 %

SSSP is available for free and in different languages
 SSSP v. 3.1 from 2009: 15 languages

DTU Food

http://sssp.dtuaqua.dk

Shellf-life prediction and time-temperature integration $\mathbf{\Xi}$

· Various systems are available to evaluate the effect of temperature(chill chains) on the shelf-life of food

http://www.cryolog.com/en/

http://www.vitsab.com/

27/38

Shellf-life prediction and time-temperature integration

· Various systems are available to evaluate the effect of temperature (chill chains) on shelf-life of food

AVANT TRACEO® est transparent, le code-barres est lisible, le produit est frais

APRÈS TRACEO® est rose, le code-barres est voilé, le produit n'est plus consommable

DTU Food

DTU Food

References

FRESHNESS, QUALITY AND SAFETY IN SEAFOODS

FLAIR-FLOW EUROPE TECHNICAL MANUAL F-FE 380A/00

May 2000

.../workshop-140110/shelf-life prediction/Dalgaard 2000.pdf http://flairflow4.vscht.cz/seafood00.pdf

DTU Food

Shelf-life prediction – effect of temperature

.

DTU

=

- Shelf-life of food determination by sensory evaluation
- Storage temperature effect on shelf-life
- Relative rate of spoilage (RRS)
 - Definition
 - RRS-models for different types of food
- Shelf-life prediction and time-temperature integration
 - Examples using the SSSP software
- Seafood Spoilage and Safety Predictor (SSSP) software
 - PC Exercises

Seafood Spoilage and Safety Predictor (SSSP)

Exercise 1: RRS model with fixed temperature sensitivity

Tropical fresh fish can have a shelf-life of 21 days at 0°C. To evaluate shelf-life at other temperatures start the SSSP software and activate the RRS model "Fresh seafood from tropical waters" ('double click'):

- Determine shelf-life for a temp. profile including: (i) 4 days at 0°C,
 (ii) 2 days at 4°C, (iii) 15 hours at 20°C and (iv) 4 day at 5°C
 (Use e.g. the zoom function to facilitate reading of shelf-life from graph activate zoom by holding down the left mouse button)
 Answer: The shelf-life is _____ days. Thus _____ days of shelf-life is lost compared to storage at 0°C.
- Save data and predictions as C:\workshop-140110\shelf-life prediction\ Ex1.xml and relevant graph as C:\workshop-140110\shelf-life prediction\Ex1.png. Prediction can then easily be used later and send to other with interest in the chill chain
- Try e.g. to save graph/predictions in a different language DTU Food

DTU Food

Seafood Spoilage and Safety Predictor (SSSP)

Exercise 1: RRS model with fixed temperature sensitivity

RS model :	Tropical s	poilage m	odel			
	X	?	۴F		°C	_
Product cha	aracteristics					
	S	torage tempe	erature (°C) :	0		
		Shel	f-life (days) : 🗍	21	Ap	ply
	Equivalent	shelf-life at I	0 °C (days) :	21		
Shelf-life pred	liction for: -					
Constant ter	nperatures	Series of co	nstant tempera	tures Temper	rature profiles fr	om logger data
Prediction	n of remainir	ng shelf-life f	or a series of	constant stora	ge temperature	es 28
	Tempera	ture (°C)	5	Storag	je time (hours)	96
Remain	ing shelf-life	(hours) —				
	Temp. (°C)	Time (h)	0 °C (h)	5 °C (h)	10 °C (h)	
•	0	0	504	276.62	151.81	
	0	96	408	223.93	122.89	
	4	48	330.43	181.35	99.53	
	20	15	165.08	90.6	49.72	
	5	96	-9.84	-5.4	-2.96	

32/38

DTU

31/38

Seafood Spoilage and Safety Predictor (SSSP) 🗮

Exercise 1: RRS model with fixed temperature sensitivity

Exercise 2: RRS models with user defined temperature characteristics The temperature characteristic (the parameter 'a') in the exponential RRS-model used for 'Fresh fish from tropical waters' is 0.12 (°C⁻¹).

What is the effect of the temperature profile evaluated in exercise 1 on another product with a shelf-life of 21 days at 0°C but with a more pronounced temperature sensitivity corresponding to a temperature characteristics 'a' of 0.15 (°C⁻¹) ?

 Use 'RRS models with user defined temperature characteristics' to compare shelf-life for the two products with temperature characteristics of respectively 0.12 and 0.15 (°C⁻¹).

Answer: Shelf-life with a temperature characteristic of 0.15 (°C⁻¹) in the exponential RRS model is ____ days.

(You do not have to type the temperature profile again – activate 'Temperature profile from logger data' to read the data you saved in Ex1.xml)

DTU Food

Seafood Spoilage and Safety Predictor (SSSP)

Exercise 2 (Cont.):

 The 15 hours at 20°C (in the evaluated temperature profile, Ex1.xml) influence shelf-life very differently for the two products with temperature characteristics of 0.12 and 0.15 (°C⁻¹). How many days of remaining shelf-life at 0°C is used in this step of the temperature profile for each of the two products ? Answer:

- ____ days for product with temperature characteristic of 0.12 (°C⁻¹)

- ____ days for product with temperature characteristic of 0.15 (°C⁻¹)

The models included in SSSP under 'RRS models with user defined temperature characteristics' allow shelf-life to be predicted for any food where the temperature characteristic and shelf-life (at a single constant temperature) are known

DTU Food

35/38

Exercise 2: RRS models with user defined temperature characteristics

🔀 RRS models with user-defined tempera	ture characteristics		? 🔀
i 🕢 🔜 📕 🌮 🔒 🔖		*F *C	
Shelf-life prediction for:			
Product characteristics Series of constant temperat	tures Temperature profiles fro	om logger data	
Product characteristics			
Stor	rage temperature (°C)	0	Apply
	Shalf-life (data)	21	~
	Sileinille (ddys)	61	Clear
	Make compariso	in 🗹	
Selection of models and temperature characteri	istics		
	Model 1	Model 2	
Model (select with scroll bar and highlight using the mouse)	Arrhenius ^ Exponential ~	Arrhenius ^ Exponential V	
Temperature characteri	istics 0.12 1/°C	0.15 1/°C	
Equivalent shelf-life at 0 °C (d	days) 21	21	
	Model 1	Model 2	
Storego topporaturo (?)	C) 10	10	
Storage temperature (c); 10	10	
Predicted shelf-life (day	/\$): 6.3	4.7	
			alculate
ad			
Ju			

Seafood Spoilage and Safety Predictor (SSSP)

Exercise 2: RRS models with user defined temperature characteristics

Exercise 2: RRS models with user defined temperature characteristics

DTU Food

Predicting the growth and inactivation of bacteria in seafood

Paw Dalgaard

Seafood & Predictive Microbiology (Research group) Section for Aquatic Microbiology and Seafood Hygiene pad@aqua.dtu.dk

Predicting the growth and inactivation of bacteria in seafood

- Predictive microbiology concept
- Primary growth and inactivation models
- Secondary models and product evaluation/validation
- Predictive microbiology applications and software
- PC Exercises

Predicting the growth of bacteria in food

DTU Food

Predictive microbiology – the concept

3/48

DTU

=

- Growth, survival and inactivation of microorganisms in foods are reproducible responses
- A limited number of environmental parameters in foods determine the kinetic responses of microorganisms
 - Temperature
 - · Water activity/water phase salt
 - pH
 - Food preservatives (organic acids, nitrite, ...)
- A mathematical model that quantitatively describes the combined effect of the environmental parameters can be used to predict growth, survival or inactivation of a microorganism and thereby contribute important information about product shelf-life

DTU Food

Roberts & Jarvis (1983)

Development of predictive microbiology models

Models are usually developed in two steps from large experiments including the effect of several environmental parameters

Models allow microbial responses to be predicted at conditions that have not been specifically studied

DTU Food

Growth of spoilage bacteria in fresh MAP cod fillets

5/48

DTU

DTU Food

Dalgaard (1998) 6/48

Primary models

DTU Primary growth models = Log (cfu/g) Exponential model Logistic model without lag Logistic model with lag Baranyi & Roberts (1994) Storage period (hours)

DTU Food

8/48

Exponential growth model

Differential form: $\frac{dN}{dt} = N \times \mu_{max}$ Integrated form: $N_t = N_o \times \exp(\mu_{max} \times time)$ Integrated and transformed: $Log(N_t) = Log(N_o \times \exp(\mu_{max} \times time))$ or $Log(N_t) = Log(N_o) + (\mu_{max} \times time) / Ln(10)$

DTU Food

DTU Food

11/48

DTU

=

DTU

Logistic growth model with delay

DTU Food

Primary model for microbial interaction

Primary model for microbial interaction

DTU

• Jameson effect (Simplifying assumption/hypothesis):

All microorganisms in a food stop growing when the dominating microflora reaches its maximum population density

• Differential form of Logistic model for growth of LAB (Intra-species competition)

$$\frac{dLAB/dt}{LAB_{t}} = \mu_{\max}^{LAB} \times \left(1 - \frac{LAB_{t}}{LAB_{\max}}\right)$$

$$\frac{dLm/dt}{Lm_{t}} = \mu_{\max}^{Lm} \times \left(1 - \frac{Lm_{t}}{Lm_{\max}}\right) \times \left(1 - \frac{LAB_{t}}{LAB_{\max}}\right)$$
Storage period (days at 25°C)

• Logistic model for growth and interaction between LAB and L. monocytogens (Lm)

DTU Food

Giménez & Dalgaard (2004)

Primary inactivation models

Fig. 1. Commonly observed types of inactivation curves. Left plot: linear $(\bigtriangledown, shape I)$, linear with tailing $(\times, shape II)$, sigmoidal-like $(\Box, shape II)$, linear with a preceding shoulder $(\bigcirc, shape IV)$. Right plot: biphasic $(\bigtriangledown, shape V)$, concave $(\times, shape VI)$, biphasic with a shoulder $(\Box, shape VII)$, and convex $(\bigcirc, shape VIII)$.

Ν	Cell concentration (cfu/g)	
dN/dt	Absolute inactivation rate (cfu/g/h)	
(dN/dt)/N = k	Specific inactivation rate (1/h)	
	Geeraerd et al. (2005)	17

DTU Food

Primary inactivation models

Model Differential form Integrated form $\frac{dN}{dt} = N \times -k_{max} \qquad \text{Log}(N_t) = \text{Log}(N_o \times \exp(-k_{max} \times \text{time}))$ Log-linear: Log-linear with $\frac{dN}{dt} = N \times -k_{\max} \times \left(\frac{1}{1+C_c}\right) \times \left[1 - \frac{N_{res}}{N_c}\right]$ shoulder (S) $Log(N_{i}) = Log\left[(N_{0} - N_{res}) \times e^{-k_{max} \times t} \times \left(\frac{e^{k_{max} \times S_{i}}}{1 + (e^{k_{max} \times S_{i}} - 1) \times e^{-k_{max} \times t}}\right) + N_{nes}\right]$ and/or tailing: S_1 (time) $Log(N_{t}) = Log\left[(N_{0} - N_{res}) \times 10^{(\frac{t}{\delta})^{p}} + N_{res}\right]$ Weibull model : (concave, convex) $Log(N_t) = Log(N_0) + Log(f \times e^{-k_{\max}t^{\times t}} + (1-f) \times e^{-k_{\max}t^{\times t}})$ Biphasic models: Geeraerd et al. (2005) 18/48 DTU Food

DTU
Primary inactivation model fitting - GInaFit

DTU

DTU

Primary inactivation model fitting – Combase/DMFit

DTU Food

Predicting the growth and inactivation of bacteria in seafood

- Predictive microbiology concept
- Primary growth and inactivation models
- Secondary models and product evaluation/validation
- Predictive microbiology applications and software
- PC Exercises

DTU Food

21/48

DTU

Development of predictive microbiology models

Models are usually developed in two steps from large experiments including the effect of several environmental parameters

Models allow microbial responses to be predicted at conditions that have not been specifically studied

DTU Food

Secondary growth or inactivation models

0.9

ള്ള 0.8 ജ. 0.7

0.6 0.5 0.5

Sdrt (maximums 0.4 0.2 0.1

Kinetic growth models

- Lag time (λ)
- Growth rate (μ_{max})
- Maximum cell density (N_{max})

Probability of growth models Growth/no growth interface models Kinetic inactivation models

DTU Food

23/48

10

100

% co2

Evaluation/validation of growth models

A *P. phosphoreum* growth model has been successfully validated by comparison of predictions and data from naturally contaminated fresh MAP fish at constant and changing storage temperatures

Acceptable model: 0.75 < Bias factor < 1.25

DTU Food

Predicting the growth of bacteria in food

DTU

- Predictive microbiology concept
- Primary growth models
- · Secondary models and product evaluation/validation
- Predictive microbiology applications and software
- PC Exercises

Application of predictive microbiology models

- Determine product characteristics and storage conditions of food Temperature, a_w/NaCl, pH, organic acids, nitrit, smoke components, inhibting microflora
- 2. Secondary model \rightarrow lag time, growth rate, etc.
- 3. Primary model \rightarrow Growth curve (Concentration over time)
- Application software facilitates step 2 and 3
- Predictions can be <u>useful</u> or <u>misleading</u> depending on:
 - Successful product validation and correct use of models
 - Appropriate information about food and storage conditions

DTU Food

DTU

=

Application of a predictive model –

Example with fresh fish in modified atmosphere packaging

Predicting growth of spoilage bacteria – example with fresh MAP fish

Application of SSSP - effect of atmosphere, hygiene and temperature on shelf-life of e.g. fresh MAP cod

Temperature (°C)	P. phosphoreum (cfu/g)	CO₂ (%)	Shelf-life (days)
0	10	30	12,4
0	10	50	14,4
2	10	50	9,3
2	1000	50	7,0
15	1000	50	1,4
15	1000	30	1,2

DTU

=

Seafood Spoilage and Safety Predictor (SSSP)

		?	۴F		*C	
Product c	haracteristics	-		20 H		
In	itial cell density	(cfu/g):	5		Shelf-life	(days):
	Temperal	ture (°C) :	0	G	owth rate (µm	ax, 1/h):
	Percenta	ge CO2:	31.7			Apply
Shelf-life pro	ediction for: constant tempe	atures Te	emperature pro	ofiles from logge	r data Calcul	lation of % CO2 i
Shelf-life pro Series of c Remain	ediction for: constant tempe ning shelf-life (F Tempera ction of remain	eratures Te hours) iture (*C)	emperature pro 0 e for a series	ofiles from logge Stora of constant st	r data Calcul ge time (hours) prage tempera	lation of % CD2 i
Shelf-life pro	ediction for: constant tempe ning shelf-life (F Tempera ction of remain Temp. (*C)	eratures Te hours) hture (*C) hing shelf-life Time (h)	emperature pro 0 e for a series 0 °C (h)	ofiles from logge Stora of constant st 5 °C (h)	r data Calcul ge time (hours) prage tempera 10 °C (h)	lation of % CO2 i) 96 tures Log(cfu/g)
Shelf-life pro	ediction for: constant tempe ning shelf-life (f Tempera ction of remain Temp. (*C) 0	eratures Te hours) hure (*C) hing shelf-life Time (h) 0	omperature pro 0 e for a series 0 °C (h) 312.36	ofiles from logge Stora of constant st 5 °C (h) 124.04	r data Calcul ge time (hours) prage tempera 10 °C (h) 66.1	lation of % CO2 i) 96 tures Log(cfu/g) 0.7
Shelf-life pro	ediction for: constant tempe ning shelf-life (F Tempera ction of remain Temp. (*C) 0	eratures Te hours) hure (*C) hing shelf-life Time (h) 0 96	o o o o o c (h) 312.36 216.36	files from logge Stora of constant st 5 °C (h) 124.04 85.92	r data Calcul ge time (hours) orage tempera 10 °C (h) 66.1 45.79	ation of % CO2 i 96 tures Log(cfu/g) 0.7 3.27
Shelf-life pro	ediction for: constant tempera ning shelf-life () Tempera ction of remain Temp. (*C) 0 0 4	eratures Te hours) hing shelf-life Time (h) 0 96 48	o o o o c (h) 312.36 216.36 112.7	ofiles from logge Stora of constant st 5*C (h) 124.04 85.92 44.76	r data Calcul ge time (hours) orage tempera 10 °C (h) 66.1 45.79 23.85	lation of % CO2 i 9 96 tures Log(cfu/g) 0.7 3.27 6.04
Shelf-life pro	ediction for: constant tempera ning shelf-life (I Tempera ction of remain Temp. (°C) 0 4 14	eratures Te hours) hing shelf-life Time (h) 0 96 48 12	o o o o c (h) 312.36 216.36 112.7 28.86	ofiles from logge Stora of constant st 5*C (h) 124.04 85.92 44.76 11.46	r data Calcul ge time (hours) orage tempera 10°C (h) 66.1 45.79 23.85 6.11	ation of % CD2 i 9 96 tures Log(cfu/g) 0.7 3.27 6.04 7.72

DTU Food

Effect of a simple temperature profile on growth of *P. phosphoreum* (SSO) and on shelf-life of fresh MAP fish

DTU Food

33/48

Effect of temperature profile recorded by a data logger on growth of *P. phosphoreum* (SSO) and on shelf-life of fresh MAP fish

DTU Food

Shelf-life prediction - models and freeware

SSO	Product	Freeware
H ₂ S-producing Shewanella	Fresh seafood	- Seafood Spoilage and Safety Predictor
Pseudomonas spp.	Fresh seafood	 Combase Predictor Fish Shelf Life Prediction
Photobacterium phosphoreum	Fresh marine MAP fish and shell-fish	- Seafood Spoilage and Safety Predictor
Lactic acid bacteria	Fresh and lightly preserved products	- Seafood Spoilage and Safety Predictor
Brochothrix thermosphacta	Fresh and lightly preserved products	- Combase Predictor

- Seafood Spoilage and Safety Predictor (http://sssp.dtuaqua.dk)
- Combase Predictor (http://www.combase.cc)
- Fish Shelf Life Prediction (http://www.azti.es/...)

```
DTU Food
```

Application of <u>successfully validated</u> predictive microbiology models

- Predict the effect of product characteristics and storage conditions
 - on growth, survival of inactivation of microorganisms
 - Development or reformulation of products
- HACCP plans establish limits for CCP
- Food safety objectives equivalence of processes
- Education easy access to information
- Quantitative microbiological risk assessment (QMRA)

The concentration of microbial hazards in foods may increase or decrease substantially (millions of folds) during processing and distribution

DTU Food

McMeekin et al. (2006)

36/48

35/48

DTU

=

Predictive microbiology software (freeware)

1	~	-	10.1	
	н	1	н	
	υ		U	,
	-	_	-	
	-		-	
	Ξ		-	1

• Predictive Microbiology Information Portal (PMIP; portal.arserrc.gov) and

- Pathogen Modeling Programme (PMP; pmp.arserrc.gov/PMPOnline.aspx) (USA)
 - \bullet > 40 models of growth, survival and inactivation
 - Reqularly updated (7 versions of PMP)
 - Available free of charge during the last 15 years
 - Models and tutorials available online
- ComBase (UK, USA) www.combase.cc

ComBase Predictor (previously Growth Predictor and Food MicroMoodel)

- Online models for growth or inactivation of 12 foodborne pathogens
- Model for growth of *Brochothrix thermosphacta*

ComBase Browser

- Data for growth, survival or inactivation of food-related microorganisms
- >45000 growth/inactivation curves

DTU Food

Predictive microbiology software (freeware)

- Seafood Spoilage and Safety Predictor (DK) http://sssp.dtuaqua.dk
 - Time-temperature integration
 - 15 models for shelf-life, specific spoilage organisms, histamine formation and growth of *Listeria monmocytogenes*
- Refrigeration index calculator (Australien) www.mla.com.au/publications
 - Growth of E. coli during chilling of meat e.g. in relation to portioning
- Perfringens Predictor (UK) www.ifr.ac.uk/Safety/GrowthPredictor/
 - Growth of Clostridium perfringens during chilling of food
- Process Lethality Determination spreadsheet (AMI Foundation, USA)
 - www.amif.org/FactsandFigures/AMIF-Process-ProcessLethality.htm
 - · Calculation of heat inactivation for time-temperature profile

DTU Food

39/48

Predictive microbiology software (freeware)

DTU

- Opti-Form *Listeria* control model 2007 (PURAC)
 - http://www.purac.com/purac_com/d9ed26800a03c246d4e0ff0f6b74dc1b.php
 - Effect of organic acids, temperature, pH and moisture on growth of Listeria

Curve fitting software:

- *DMFit* (UK) www.combase.cc
 - Estimation of growth kinetic parameters from growth curve data
- MicroFit (UK) www.ifr.bbsrc.ac.uk/MicroFit/
 - Estimation of growth kinetic parameters (lag time, maximum specific growth rate and maximum population density) from growth curve data
- GInaFit (Belgium) http://cit.kuleuven.be/biotec/downloads/GInaFit/get_tool.php
 - Estimation of kinetic parameters from inactivation curves of various shapes (Log-linear, shoulders, tails, concave and convex)

Predictive microbiology software

• Sym'Previus (France) - www.symprevius.net

- Extensive database with predictive software/expert system
- Food Spoilage Predictor (Australien)
 - ~500 AUD, 1 model for growth of Pseudomonas spp. in meat
 - Prediction of shelf-life, time-temperature integration

DTU Food

41/48

DTU

=

DTU

=

Predicting the growth of bacteria in food

- Predictive microbiology concept
- Primary growth models
- · Secondary models and product evaluation/validation
- Predictive microbiology applications and software
- PC Exercises

Seafood Spoilage and Safety Predictor (SSSP)

DTU

Predicting growth of spoilage bacteria (Shewanella)

 H_2S -producing *Shewanella* bacteria are well known spoilage microorganisms in fresh fish and in some fresh meat products with high pH above ~6. *Shewanella* bacteria are primarily important for spoilage of products when stored in air but they can also contrinute to spoilage of vacuum-pakked food. Use the SSSP model 'H₂S-producing Shewanella-Fresh seafood stored in air ' to predict the effect of growth of this spoilage bacterium on product shelf-life:

- With and initial concentration of 10 *Shewanella*/g the predicted shelf-life of fresh fish at 0°C is 12.8 days.
- What is the shelf-life at 0°C with and an initial concentration of 1000 Shewanella/g? Answer: _____ days.
- At what temperature is this shelf-life obtained for a product with only 10 Shewanella/g? Answer: _____ °C (Use a trial and error approach).
 DTU Food 43/48

Seafood Spoilage and Safety Predictor (SSSP)

Predicting growth of spoilage bacteria (Shewanella)

High storage temperatures reduce the shelf-life of food markedly. Variable storage temperatures can also have a sever effect on growth of spoilage bacteria and on shelf-life but increased product temperatures during short periods may excede critical temperature limits without having an important effect on shelf—life.

 How much is the concentration of *Shewanella* increasing during 120 hours of storage at a constant temeperature of 2.0°C – when the initial cell concentration is 10 cfu/g? Answer: _____ log(cfu/g)

Predicting growth of spoilage bacteria (Shewanella)

- How much is the concentration of *Shewanella* increasing during 120 hours of storage with the temperature profile shown on the previous slide (and included in the file .../ASCII-2-7-9-9.txt) as compared to storage at 2°C?
 (Use e.g. the zoom-function to obtain information from graphs) Answer: _____ log (cfu/g).
- How much is shelf-life of the product reduced by the temperature profile (.../ASCII-2-7-9-9.txt) as compared the storage at 2°C? Answer: _____ days.

(Is this an important reduction of shelf-life?)

DTU Food

45/48

DTU

Growth of *Shewanella* and shelf-life – **fishmonger example**

Some fishmongers expose whole gutted fish in their shop window. These fish are not entierly covered with ice and during a working day the temperature of the fish may increase to 5-10°C. Is this important for shelf-life and concentrations of bacteria on these fish?

- With and initial concentration of 1000 *Shewanella*/g the predicted shelf-life of fresh fish at 0°C is 8.6 days.
- Let us assume the fishmonger keeps this fish at 2°C during 48 hours before it is sold and that in addition some fish are displayed during 5 hours in the shop window at 7.5°C.
- Let us also assume that a consumer, after buying the fish, keep it in a refrigerator at 5°C.

(The questions to be answered are on the next slide)

DTU Food

Seafood Spoilage and Safety Predictor (SSSP)

Growth of Shewanella and shelf-life - fishmonger example

Use the SSSP model 'H₂S-producing Shewanella-Fresh seafood stored in air' to predict remaining shelf-life of the fish in the consumer refrigerator at 5° C after:

- The fishmonger has keept the fish at 2°C during 48 hours. Answer: _____ days.
- The fishmonger has keept the fish at 2°C during 48 hours and it has then been displayed during 5 hours in the shop window at 7.5°C. Answer: _____ days.

How much is the concentration of *Shewanella* increasing during the display in the shop window (5 hours at 7.5° C)? Answer: _____ log (cfu/g) = _____fold.

3. Is this storage of fish in the show window important for the overall product shelf-life? Answer: _____.

DTU Food

47/48

DTU

Seafood Spoilage and Safety Predictor (SSSP)

Predicting growth of spoilage bacteria (Photobacterium)

Photobacterium phosphoreum is responsible for spoilage of fresh marine fish when stored in modified athosphere packing (MAP). Fresh MAP white fish like cod and plaice with 10 *P. phosphoreum*/g have shelf-life of 11-12 days when stored in MAP with 25% $CO_2/75\%$ N₂ at 0°C. Use the SSSP model '*Photobacterium phosphoreum*' to predict the effect of storage temperatue and atmosphere on growth of this spoilage bacterium and on product shelf-life:

- How much is shelf-life extended (and growth *P.phosphoreum* delayed) by increading the concentration of CO₂ from 25% to 40%?
 Answer: _____ days.
- How much is shelf-life reduced by using vacuum-packing (corresponding to 0% CO₂) compared to MAP with 40% CO2 and 60% N₂?
 Answer: _____ days.

DTU Food

Seafood safety prediction 1.

Presentation and PC exercises concerning histamine formation and histamine fish poisining

Paw Dalgaard

Seafood & Predictive Microbiology (Research group) Section for Aquatic Microbiology and Seafood Hygiene pad@aqua.dtu.dk

DTU Food National Food Institute

Food safety prediction

- Histamine formation and histamine fish poisoning
- Modelling growth and histamine (metabolite) formation
- Prediction of histamine formation by Morganella bacteria
- PC exercises

DTU Food

DTU

=

Histamine formation in marine finfish

• Histamine fish poisoning is responsible for more foodborne incidents of disease than any other hazard in fish and shell-fish

Free histidine → Histidine decarboxylase → Histamine

- Significant growth is required → more than 1-10 million bacteria/g
- Toxic histamine concentrations (> 500 mg/kg) can be formed by:
 - Mesophilic bacteria at above 7–10°C
 - Psychrotolerant bacteria at above ~0°C
- Toxic histamine concentrations can be formed in marine finfish when these are chilled in agreement with regulations for EU or USA

DTU Food

3/29

DTU

Histamine and histamine fish poisoning (HFP) Existing legislation and controls

Critical concentrations of histamine:

- EU : 100-200 mg/kg and 200-400 mg/kg if maturated in brine (EC 2073/2005)
- USA : 50 mg/kg (Defect action level, FDA/CFSAN 2001)

Critical temperatures for storage and distribution fish:

- EU : Fresh and thawed fish (0-2°C) and lightly preserved seafood (5°C) (EU 853/2004)
- USA : Fersh fish (4.4°C) with demands for rates of chilling (FDA/CFSAN 2001)

DTU Food

Histamine fish poisoning (HFP) - occurrence

Country	Voor	Incidente	Cases		
Country	Juntry Tear Incidents		Total	per year/million	
Hawaii, USA	1990-2003	111	526	31	
Denmark	1986-2005	64	489	4.9	
New Zealand	2001-2005	11	62	3.1	
Japan	1970-1980	42	4122	3.2	
	1994-2005	68	1523	1.1	
France	1987-2005	123	2635	2.5	
Finland	1998-2005	15	89	2.1	
Taiwan	1986-2001	8	535	1.5	
UK	1976-2004	515	1300	0.8	
Switzerland	1966-1991	76	111	0.7	
South Africa	1992/2004	10/3	22/21	0.4	
Australia	1995-2000	7	34	0.4	
USA	1990-2003	341	1651	0.3	
Canada	1975-1995	39	109	0.2	

DTU Food

Dalgaard et al. (2008) 5/29

Examples of marine finfish that cause histamine fish poisoning $\mathbf{\Xi}$

Tuna (bluefin)/tun (Thunnus thynnus)

Mahi-mahi/guldmakrel (Coryphaena hippurus)

(Belone belone)

HFP and bacteria responsible for histamine formation

Both mesophilic and psychrotolerant bacteria can be responsible for histamine formation and thereby HFP

Seafood	Bacteria	Place and time
Fresh tuna	Morganella morganii	Japan, 1955
Fresh tuna	Morganella morganii	Japan, 1965
Fresh tuna	Hafnia sp.	Praque, 1967
Fresh tuna	Raoultella planticola (Klebsiella pneumoniae)	California, 1977
Dried Sardine	Photobacterium phsophoreum	Japan, 2002
Tuna in chilisauce	Morganella psychrotolerans or Photobacterium phosphoreum	Denmark, 2003
Cold smoked tuna	Photobacterium phosphoreum	Denmark, 2004
Cold smoked tuna	Morganella psychrotolerans	Denmark, 2004
Tuna (packed in film)	Morganella morganii	Denmark, 2004
Fresh tuna	Photobacterium phosphoreum	Denmark, 2006
Dried milkfish	Raoultella ornithinolytica	Taiwan, 2006
DTU Food		7/29

Food

Modified from Dalgaard and Emborg (2009) in 'Foodborne Pathogens'

Histamine formation in marine finfish

DTU

DTU Food

Emborg & Dalgaard (2008a)

Food safety prediction

- · Histamine formation and histamine fish poisoning
- Modelling growth and histamine (metabolite) formation
- Prediction of histamine formation by Morganella bacteria
- PC exercises

DTU Food

9/29

DTU

Specific spoilage organisms (SSO) and indices of quality/spoilage

DTU

Prediction of histamine formation

Growth of the histamine producing bacteria must be

DTU Food

Development of predictive microbiology models

Models are usually developed in two steps from large experiments including the effect of several environmental parameters

Models allow microbial responses to be predicted at conditions that have not been specifically studied

DTU Food

Secondary models: Cardinal parameter models

DTU Food Rosso et al. 1995; Augustin & Carlier 2000; Le Marc et al. 2002 13/29

Secondary square-root type model Effect of storage temperature on growth rate

DTU Food

Ratkowsky et al. (1983)

14/29

DTU

DTU

Secondary square-root type model

Effect of temperature and NaCl/water activity

DTU Food

Secondary square-root type model

Simplified cardinal parameter models for sub-optimum environmental conditions

Emborg & Dalgaard (2008a) 16/29

DTU Food

Simplified cardinal parameter model for sub-optimum environmental conditions (*M. psychrotolerans*)

$$\mu_{\text{MMAX}} = 0.535$$

$$\cdot \left(\frac{T + 6.22}{20 + 6.22}\right)^2$$

$$\cdot \frac{a_w - 0.963}{1 - 0.963}$$

$$\cdot 1 - 10^{5.12 - pH}$$

$$\cdot \left(\frac{266 - CO_2}{266}\right)^2$$

$$\cdot \xi$$

• Few parameters with (at least some) biological significance

• Include terms without dimension and with values between 0 og 1

DTU Food

Secondary lag time models

- Secondary lag time models can be developed in the same way as growth rate models (1/lag time = lag rate)
- Lag time of microorganisms depend not only on environmental parameters but also on the physiological state of the microorganisms
- Lag time data is more variable than growth rate data
- 'Relative lag time' (RLT) = Lag time/generation time (t_{gen}) is used to predict lag time from μ_{max}

Lag time =
$$RLT \cdot t_{gen} = RLT \cdot Ln(2) / \mu_{max}$$

Ross and Dalgaard 2004 18/29

DTU Food

Modelling of growth and histamine formation

Models for growth and histamine formation by both *M. psychrotolerans* $\stackrel{III}{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\underset{\end{array}}}}}}}{iii}}}{iiii}}}$ and *M. morganii* have been developed and validated

DTU Food

Emborg & Dalgaard (2008b) 20/29

High concentrations of *M. morganii* inhibit growth of *M. psychrotolerans* (Jameson effect)

DTU

Food safety prediction

- · Histamine formation and histamine fish poisoning
- Modelling growth and histamine (metabolite) formation
- Prediction of histamine formation by Morganella bacteria
- PC exercises

DTU

DTU

Prediction of histamine formation

Histamine formation by *M. psychrotolerans* can be predicted for vacuum packed fresh tuna and it is markedly faster at 4.4 °C compared to 2.0 °C

Prediction of histamine formation

DTU

Ξ

Salt is essential to prevent toxic concentrations of histamine in chilled vacuum-packed cold-smoked tuna

DTU Food Seafood Spoilage and Safety Predictor (SSSP) software – sssp.dtuaqua.dk 26/29

Prediction of histamine formation in marine finfish

- New combined model for *M. psychrotolerans* and *M. morganii* predicts histamine formation for a wide range of storage temperatures
- The model allows the effect of delayed chilling to be predicted

Seafood safety prediction – histamine formation

DTU

Exercise 1: Morganella - effect of storage temperature

Histamine formation in fish can be due to both psychrotlerant and mesophilic bacteria. Use the SSSP model '*Morganella morganii* and *M. psychrotolerans* – growth and histamine formation' to predict the effect of storage temperatures between 0°C and 25°C on the time to toxic histamine formation:

- With an initial concentrations of 1 cfu/g for both *M. morganii* and *M. psychrotolerans* predict the time to formation of 500 mg histamine/kg:

<u>Temp. (°C)</u>	Time to 500 mg/kg	Most important bacterium
0°C		
5°C		
10°C		
15°C		
20°C		
25°C		
DTU Food		28/29

Seafood safety prediction – histamine formation

Exercise 2: Morganella psychrotolerans – effect of NaCl and CO₂

Histamine formation in chilled cold-smoked tuna can be due to *Morganella psychrotlerant*. Use the SSSP model '*Morganella psychrotolerans* – growth and histamine formation' to predict the effect of salt (NaCl) and storage atmosphere ($\% CO_2$ in MAP) on histamine formation at 5°C:

- With an initial concentrations of 1 *M. psychrotolerans/g* predict the time to formation of 500 mg histamine/kg in a product with pH 5.9:

<u>% CO₂</u>	Time to 500 mg/kg
0 %	
30 %	
0 %	
30 %	
	<u>% CO₂</u> 0 % 30 % 0 % 30 %

(Info. can help evaluate the effect of uneven salt distribution in smoked tuna) DTU Food 29/29

Seafood safety prediction 2

Presentation and PC exercises concerning *Listeria monocytogenes* in ready-to-eat seafood

Paw Dalgaard

(pad@aqua.dtu.dk)

DTU Food National Food Institute

Outline

- Predictive models for Listeria monocytogenes
 - Why predictive models
 - Available predictive models for *L. monocytogenes*
 - · International validation study
- Application of models
 - Examples
 - Exercises

DTU

Ħ

• The EU-regulation (EC 2073/2005) differentiates between ready-to-eat foods that are able or unable to support growth of *L. monocytogenes*

Ready-to-eat foods	Critical limit	Comment
Able to support growth	None in 25 g (n = 5)	When produced
Able to support growth	100 CFU/g	It must be <u>documented</u> that 100 CFU/g is not exceeded within the storage period
Unable to support growth	100 CFU/g	It must be <u>documented</u> that growth is prevented

- Documentation \rightarrow product characteristics, challenge tests, predictive models
- Similar criteria has been approved by the Codex Alimentarius

Why – predictive models

- More people becomes sick from listeriosis
- $\mbox{\cdot}$ Complex products \rightarrow several parameters affects growth of bacteria
- Increased assortment of products
- Wish/demand for products with reduced content of preservation
- Regulations \rightarrow documentation
- Fast answer
- Flexible
- Easy to use
- Knowledge about products characteristics and storage conditions are needed

DTU

=

Predicting the growth of bacteria in food

Predictive models for L. monocytogenes

DTU

Ξ

- Growth and growth boundary model for *L. monocytogenes* in lightly preserved seafood (Mejlholm and Dalgaard, 2009)
 - Temperature
 - pH
 - NaCl/water activity
 - · Smoke components (phenol)
 - Nitrite
 - CO₂
 - Acetic acid
 - Benzoic acid
 - Citric acid
 - Diacetat
 - Lactic acid
 - Sorbic acid
 - Interactions between all these parameters

Predictive models for L. monocytogenes

Predictive models for L. monocytogenes

Model of Mejlholm and Dalgaard (2009)

 $\sum_{i} \frac{1}{2\prod (1-\varphi_{e_j})}$

Predictive models for L. monocytogenes

- Validated for a wide range of lightly preserved and ready-to-eat seafood
- Validation \rightarrow comparison of predicted and observed growth
 - Growth rates
 - Growth/no-growth
- Cooked and peeled shrimp
- Cold-smoked and marinated seafood
- Brined shrimp
 - Benzoic, citric and sorbic acid
 - Acetic and lactic acid

Increasing complexity

Predictive models for *L. monocytogenes*

Journal of Food Protection, Vol. 72, No. 10, 2009, Pages 2132–2143 Copyright @, International Association for Food Protection Development and Validation of an Extensive Growth and Growth Boundary Model for Listeria monocytogenes in Lightly Preserved and Ready-to-Eat Shrimp OLE MEJLHOLM* AND PAW DALGAARD iology, Aquatic Microbiology and Seafood Hygiene, National Institute of Aquatic Resc University of Denmark, Søltofts Plads, Building 221, DK-2800, Kgs. Lyngby, Denmark es (DTU Aqua), Techn MS 09-054: Received 4 February 2009/Accepted 27 April 2009 OTU Aqua od Spoilage and Safety Predic ed SSSF v. 3.1 from August 2009 - Act reduct shall de and power of bacteria is different heurs and lightly ig the effect of product temperature profess rescribed Juring storage and regard, some of the predictive models in 1000 an equally used for other el growth and growth locardary mudel for the effect of languestic 20, empire internets, retries and organic andit (lasettic/dated.ette. http://sssp.dtuaqua.dk/ A schedul resolution of SCEN x Tables Inspect The Warnsolf And Francescole senses I if an above Michael Diploma schedule
 Michael Diploma resolution 1.2013 or hadren

nterss within 1559 applants how the suffware sam be used and provides information e different methematical models used to predict shell the and proved of bacteria

• Other predictive models for *L. monocytogenes*

Predictive models for L. monocytogenes

- Other predictive models for L. monocytogenes
 - Combase predictor (http://www.combase.cc/)

• Other predictive models for *L. monocytogenes*

Outline

- Predictive models for Listeria monocytogenes
 - Why predictive models
 - Available predictive models for *L. monocytogenes*
 - · International validation study
- Application of models
 - Examples
 - Exercises

- Objective \rightarrow to evaluate and compare the performance of existing predictive models for *L. monocytogenes* on
 - A large number of data from different ready-to-eat foods
 - Data from different laboratories and countries

International validation study

	Parameters included in the models								
Predictive Models	Temp.	NaCl/ a _w	рН	Smoke comp.	CO ₂	Nitrite	Acetic acid/ diacetate	Lactic Acid	Inter- actions
Delignette-Muller et al. (2006)	+	-	-	-	-	-	-	-	-
Augustin et al. (2005)	+	+	+	+	+	+	-	-	+
Zuliani et al. (2007)	+	+	+	-	-	-	+	+	+
PURAC (2007)	+	+	+	-	-	+	+	+	-
DMRI (2007) ^a	+	+	+	-	+	+	+	+	+
Mejlholm and Dalgaard (2009)	+	+	+	+	+	+	+	+	+

^a Danish Meat Research Institute

	Number of growth responses for <i>L. monocytogenes</i>							
Products	Growth	No-growth	Total					
Meat	442	260	702					
Seafood	160	33	193					
Poultry	50	14	64					
Dairy	55	0	55					
	707	307	1014					

· Collected from 37 independent sources (published and unpublished data)

More than 20 different types of products

50% of the products were added acetic acid/diacetate and/or lactic acid

• More than 100 different isolates of L. monocytogenes

International validation study

Growth rates (µ_{max})

- Calculation of bias and accuracy factors
- Bias factor = $1.0 \rightarrow$ predicted growth is equal to observed growth
- + Bias factor > 1.0 \rightarrow predicted growth is faster than observed growth
- Bias factor $< 1.0 \rightarrow$ predicted growth is slower than observed growth
- Bias factor \rightarrow to graduate the performance of models (Ross, 1999)
 - 0.95-1.11 \rightarrow Good
 - 0.87-0.95 or 1.11-1.43 \rightarrow Acceptable
 - < 0.87 or > 1.43 \rightarrow Unacceptable

Growth/no-growth responses

- Correct predictions
- Fail-dangerous predictions
- Fail-safe predictions

		Bias/accuracy factors						
Products	n	Delignette- Muller et al. (2006)	Augustin et al. (2005)	Zuliani et al. (2007)	PURAC (2007)	DMRI (2007)	Mejlholm & Dalgaard (2009)	
Meat	702	2.3/2.4	2.1/2.5	1.3/2.1	1.4/1.8	1.1/1.5	1.0/1.5	
Seafood	193	1.7/1.8	0.7/1.9	1.2/1.6	1.3/1.5	1.4/1.6	1.0/1.4	
Poultry	64	1.5/1.9	2.0/2.1	1.0/1.5	1.0/1.5	1.2/1.5	0.9/1.5	
Dairy	55	0.7/1.6	0.9/1.3	1.0/1.3	0.9/1.3	1.3/1.6	0.9/1.3	
Total	1014	2.0/2.2	1.8/2.3	1.3/1.9	1.3/1.7	1.2/1.6	1.0/1.5	
		Uacceptable	Uacceptable	Acceptable	Acceptable	Acceptable	Good	

DTU

	Bias/accuracy factors									
Products	n	Delignette- Muller et al. (2006)	Augustin et al. (2005)	Zuliani et al. (2007)	PURAC (2007)	DMRI (2007)	Mejlholm & Dalgaard (2009)			
Meat	702	2.3/2.4	2.1/2.5	1.3/2.1	1.4/1.8	1.1/1.5	1.0/1.5			
Seafood	193	1.7/1.8	0.7/1.9	1.2/1.6	1.3/1.5	1.4/1.6	1.0/1.4			
Poultry	64	1.5/1.9	2.0/2.1	1.0/1.5	1.0/1.5	1.2/1.5	0.9/1.5			
Dairy	55	0.7/1.6	0.9/1.3	1.0/1.3	0.9/1.3	1.3/1.6	0.9/1.3			
Total	1014	2.0/2.2	1.8/2.3	1.3/1.9	1.3/1.7	1.2/1.6	1.0/1.5			

Without the effect of acetic and lactic acid

_

	Percentage of correct growth/no-growth predictions								
Products	n	Delignette- Muller et al. (2006)	Augustin et al. (2005)	Zuliani et al. (2007)	PURAC (2007)	DMRI (2007)	Mejlholm & Dalgaard (2009)		
Meat	702	63	76	82	65	81	86		
Seafood	193	83	70	89	83	86	96		
Poultry	64	78	78	84	78	95	97		
Dairy	55	100	100	100	100	100	100		
Total	1014	70	76	85	71	83	89		
Fail-dange	rous (%)	0	9	10	0	4	5		
Fail-safe (%)	30	15	5	29	13	6		
Interactio	on (+/-)	-	+	+	-	+	+		

- The performance of six predictive models for *L. monocytogenes* was evaluated on more than 1000 data sets from ready-to-eat foods
- To predict growth in complex foods → predictive models with a corresponding degree of complexity are needed
- Predictive models can be generally applicable \rightarrow product specific models are not necessarily needed
- Ready to be used for assessment and management of food safety

Outline

- Predictive models for Listeria monocytogenes
 - Why predictive models
 - Available predictive models for *L. monocytogenes*
 - International validation study
- Application of models
 - Examples
 - Exercises

Application of models - examples

Product development/reformulation

DTU

Product development/reformulation

Listeria monocytogenes growth	model							
Tel 🖬 📰 7 1 🍰 🖕							4	1 10
Product industrialistics L. monocytogenesis inflat cell fevel (ptu/g) Tergesettuse (*C) NaCl in water phene % gH Simalar components - phenologene) % CO2 in head specia gal a ngalitakan Niker, nga/g Sinoga panol (d) Landak ter kana ku	Poduct 1	Product 2 1 5.0 0 0	Digener ackle in weiter phase of product Acetic ackle (prov) Berrow ackle (prov) Dioenter (prov) Lactive and (prov) Sortic ackle (prov) Sortic ackle (prov)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 ppr	n	
	Les I T	(C)						
Growth rate, lag time and growth boundary under (1/h) Product 1 0 Product 2 0.0079	lag time (d) Indinity 16.5	PH (4) 1.0748 0.6236	Time for 100-fold increase (d) L. monocytogenes (d) Not reached Not reached					
Prodicted growth of L. monocytoger								5 A A
4 2		Benzo produc 2000 p	ic and sorbic a cts with high p ppm are neede	cids are no H → conce d to preve	t suitable ntrations nt growth	for pres above th of <i>L. ma</i>	ervation e legal l pnocytog	i of imit of <i>jenes</i>
8.00								-
0.00 1.75	3.46		18 5531 1	Storage period (days)	18.00	21.33	24.88 2	7.27 30.00
			Product 1 - L. monocytogener	- Product 2 - L. mo	nocytogenes			
The state of the state of the state of the state of the	A sea do man esta abarba							

Application of models - examples

DTU

Listeria monocytogenes growth model							E 0
8 🖬 🗰 - Z - 🍋 💊						4	10
Adac (Javanskinskinski Prod renocyclogenes midd od hevd (fold)g Temperature (*C) Nation swater physics N g H Smithe components - phenologeni Note in headspace age of explanation Notes register Shanago period (d) Todach issues the to-resonationee	Auf 1 Product 2 1 1 1 5 0 5 0 0 0 0 3 0 0 0 2 0 0 0 0	Organie acch in water phase of product A cells accli (prov) Berrois acti (prov) Cale acid (prov) Diocotale (prov) Levin acid (prov) Sorbie acid (prov)					
shard temperature Sense of occurant learnershare	en l'Improvent en medien	how how we date					
renth rate, lag time and greath boundary parameter unser(1/h) lag time Product 1 0 fir Product 2 0 h	r (pu) 10 Pu (41 nively 1.074 nively 1.10	Tane is 100 fold increase (d) L. monocytogenes (d) Not reached Not reached	1				
redicted growth of L. monocytogenes							(B). (B)
200 100 201 100 201 100 202 100 203 100 204 100	with a	acetic and lactic	acid				
E 400	1		1				
000 232	8.45	a ta suba a	164 1838 Storage period (days)	18/24	arka	24/68	1 ¹ 27

Outline

- Predictive models for Listeria monocytogenes
 - Why predictive models
 - Available predictive models for *L. monocytogenes*
 - · International validation study
- Application of models
 - Examples
 - Exercises

Application of models - exercises

Exercise 1: Growth of *L. monocytogenes*

Model: Listeria monocytogenes in chilled seafood \rightarrow growth of L. monocytogenes

A ready-to-eat food has the following characteristics:

- Temperature: 5 °C
- 2.5% NaCl in the water phase
- pH 6.1
- Smoke components: 8 ppm phenol
- 25% CO₂ at equilibrium
- · 500 ppm acetic acid in the water phase
- 8000 ppm lactic acid in the water phase
- Initial concentration of L. monocytogenes = 1 CFU/g
- Storage period (shelf life) = 21 days
- No lag time for L. monocytogenes

Application of models - exercises

n.	
~	
-	
-	-
-	-
-	-
-	-
-	

Exercise 1: Growth of L. monocytogenes - continued

- a) Is growth of *L. monocytogenes* prevented in this product? Yes/no. If no what is the concentration of *L. monocytogenes* following storage for 21 days at 5 °C
 Answer: (CFU/g)
- b) How much should the concentration of acetic acid be increased to prevent growth of *L. monocytogenes* at 5 °C
 Answer: From 500 ppm acetic acid to
 ppm acetic acid
- c) How much should the concentration of acetic acid be increased to prevent growth of *L. monocytogenes* at 5 °C if the concentration of smoke components is 15 ppm phenol instead of 8 ppm phenol Answer: From 500 ppm acetic acid to ppm acetic acid

Application of models - exercises

Exercise 1: Growth of L. monocytogenes - continued

- d) Use the initial characteristics from question a) and predict the concentration of *L. monocytogenes* at the end of the following storage period: 14 days (336 hours) at 5 °C (retail) + 2 hours at 15 °C (transport) + 7 days (168 hours) at 8 °C (home storage)
 Answer: log (CFU/g)
- e) After how many days will the product reach the critical limit of 100 CFU/g (= 2 log CFU/g) Answer: days

Outline

- Predictive models for Listeria monocytogenes
 - Why predictive models
 - Available predictive models for L. monocytogenes
 - International validation study
- Application of models
 - Examples
 - Exercises

Distance to the growth boundary (psi-value)

Application of models - examples

DTU

Distance to the growth boundary (psi-value)

DTU

International validation study

Predictive model	Fail-dangerous predictions	psi-value (mean ± SD)
Mejlholm & Dalgaard (2009)	47	1.22 ± 0.31

• Safety factor (psi-value) \rightarrow mean + 2 SD = 1.84

Droduct	Temp.	NaCl	ъЦ	Phenol	CO_2	Acetic acid	Lactic acid	
Product	(° C)	(%)	рп	(ppm)	(%)	(ppm)	(ppm)	psi-value
А	5	4.0	6.0	0	0	2000	9000	1.0
В	5	4.0	5. 9	0	25	3450	13000	1.84
С	5	2.6	5. 9	10	0	3450	13000	1.84

Outline

- Predictive models for Listeria monocytogenes
 - Why predictive models
 - Available predictive models for *L. monocytogenes*
 - International validation study
- Application of models
 - Examples
 - Exercises

Application of models - exercises

Exercise 2: Distance to the growth boundary (psi-value)

Model: Listeria monocytogenes in chilled seafood \rightarrow growth of L. monocytogenes

For a ready-to-eat food the following variability in product characteristics and storage conditions has been registered:

- Storage temperature: 5.0-7.0 °C
- 3.0-4.0% NaCl in the water phase
- pH 5.9-6.1
- Smoke components: 5-12 ppm phenol
- 20-30% CO₂ at equilibrium
- · 2000-3000 ppm acetic acid in the water phase
- · 7000-12000 ppm lactic acid in the water phase
- Initial concentration of L. monocytogenes = 1 CFU/g
- Storage period = 30 days

Application of models - exercises

Exercise 2: Distance to the growth boundary (psi-value) - continued

- a) Predict the psi-value for the least and most preserving combination of product characteristics and storage conditions
 Answer: Psi = and for the least and most preserving combination of product characteristics and storage conditions
- b) How much should the concentration of acetic acid be increased to obtain a psivalue of 1.0 for the least preserving combination of product characteristics and storage conditions?
 Answer: From 2000 ppm acetic acid to ppm acetic acid
- c) By mistake the concentration of CO₂ is only 5% in the packages. How much is the psi-value reduced for the most preserving combination of product characteristics and storage conditions, and would it be necessary to repack the product? Yes/no Answer: From 1.90 to

Application of models - exercises

Exercise 2: Distance to the growth boundary (psi-value) - continued

d) Type in the most preserving combination of product characteristics and storage conditions from exercise 2a). Rank the parameters (temperature, NaCl, pH, phenol, CO₂, acetic acid and lactic acid) in descending order with respect to their impact on the distance to the growth boundary (psi-value) (use changes as indicated in the table)

Parameters	Change	Psi-before	Psi-after	Psi-change	Rank
Temperature	$5 ^\circ \mathrm{C} \rightarrow 7 ^\circ \mathrm{C}$	1.90	1.55	0.35	
NaCl	$4\% \rightarrow 3\%$	1.90			
рН	5.9 → 6.1	1.90			
Phenol	12 ppm \rightarrow 5 ppm	1.90			
CO ₂	30% → 20%	1.90			
Acetic acid	3000 ppm \rightarrow 2000 ppm	1.90			
Lactic acid	12000 ppm → 7000 ppm	1.90			

DTU

Exercises - solutions

Exercise 1 - solutions

Exercise 1: Growth of L. monocytogenes - continued

- a) Is growth of *L. monocytogenes* prevented in this product? Yes/no. If no what is the concentration of *L. monocytogenes* following storage for 21 days at 5 °C
 Answer: 1.5 log (CFU/g)
- b) How much should the concentration of acetic acid be increased to prevent growth of *L. monocytogenes* at 5 °C
 Answer: From 500 ppm acetic acid to 2800 ppm acetic acid
- c) How much should the concentration of acetic acid be increased to prevent growth of *L. monocytogenes* at 5 °C if the concentration of smoke components is 15 ppm phenol instead of 8 ppm phenol Answer: From 500 ppm acetic acid to 1740 ppm acetic acid

Exercise 1 - solutions

Exercise 1: Growth of L. monocytogenes - continued

- d) Use the initial characteristics from question a) and predict the concentration of *L. monocytogenes* at the end of the following storage period: 14 days (336 hours) at 5 °C (retail) + 2 hours at 15 °C (transport) + 7 days (168 hours) at 8 °C (home storage)
 Answer: 2.5 log (CFU/g)
- e) After how many days will the product reach the critical limit of 100 CFU/g (= 2 log CFU/g) Answer: 18.6 days

Exercise 2 - solutions

Exercise 2: Distance to the growth boundary (psi-value)

- a) Predict the psi-value for the least and most preserving combination of product characteristics and storage conditions
 Answer: Psi = 0.68 and 1.90 for the least and most preserving combination of product characteristics and storage conditions
- b) How much should the concentration of acetic acid be increased to obtain a psivalue of 1.0 for the least preserving combination of product characteristics and storage conditions?
 Answer: From 2000 ppm acetic acid to <u>5010</u> ppm acetic acid
- c) By mistake the concentration of CO_2 is only 5% in the packages. How much is the psi-value reduced for the most preserving combination of product characteristics and storage conditions, and would it be necessary to repack the product? Yes/no Answer: From 1.90 to 1.80

Exercise 2 - solutions

Exercise 2: Distance to the growth boundary (psi-value)

d) Type in the most preserving combination of product characteristics and storage conditions from exercise 2a). Rank the parameters (temperature, NaCl, pH, phenol, CO₂, acetic acid and lactic acid) in descending order with respect to their impact on the distance to the growth boundary (psi-value) (use changes as indicated in the table)

Parameters	Change	Psi-before	Psi-after	Psi-change	Rank
Temperature	$5 \text{ °C} \rightarrow 7 \text{ °C}$	1.90	1.55	0.35	2
NaCl	$4\% \rightarrow 3\%$	1.90	1.84	0.06	6
рН	5.9 → 6.1	1.90	1.32	0.58	1
Phenol	$12 \rightarrow 5 \text{ ppm}$	1.90	1.72	0.18	5
CO ₂	30% → 20%	1.90	1.84	0.06	6
Acetic acid	3000 ppm \rightarrow 2000 ppm	1.90	1.62	0.28	4
Lactic acid	12000 ppm \rightarrow 7000 ppm	1.90	1.56	0.34	3

Seafood safety and shelf-life prediction a one-day workshop

14th January 2010, Reykjavik, Iceland

Evaluation	
Name (can be anonymous)	:
Has the workshop been useful in relation to the	:
work you perform today and/or expect to carry	
out in the future?	
Within which area do you expect primarily to	:
use predictive models/computer software in	
relation to your work with seafood (shelf-life,	
safety, both or maybe not at all)?	
Has the activities included in the workshop	:
been sufficient for you to use the SSSP	
software within your future work?	
	:
Please suggest topic(s) that you feel should be	
included in future workshops of this type	
	:
Please suggest topic(s) that you feel should be	
excluded from future workshops of this type	
	:
Other suggestions?	