In book: The World of Sea Cucumbers, Challenges, Advances, and Innovations. 1st Edition, pp. Editors: Annie Mercier, Jean-Francois Hamel, Andrew Suhrbier, Christopher Pearce. ISBN: 9780323953771.
Flokkur: Greinar
The aquaculture sector relies heavily on soybean meal (SBM) and soy-derived proteins, largely due to their availability, low price and favorable amino acid profile. However, for Atlantic salmon, the inclusion of soybean meal, and soy protein concentrate (SPC) in certain combinations has been associated with impacts on gut health and welfare. This study evaluated two SBM treatments that target improved gut health and were formulated for inclusion in freshwater phase salmon diets: enzyme pre-treatment (ETS), and addition of fructose oligosaccharide (USP). These were compared with untreated soybean meal (US) and fish meal (FM). The effects on growth performance, gut microbiome, and behaviors relevant to welfare were investigated. Both diets containing the treated SBM supported growth performance comparable with FM and altered the gut microbiome. Fish fed SBM displayed a tendency toward more reactive behavior compared with those fed the FM-based control. All fish tested had a low response to elicited stress, although ETS-fed fish responded more actively than those fed the US diet. SBM-fed fish had the lowest repeatability of behavior, which may have implications for welfare. Both treatments of SBM are a promising option to optimize the application of this widely used protein source for aquaculture feeds.
Abstract
Atlantic salmon (Salmo salar) is one of the worlds most domesticated fish. As production volumes increase, access to high quality and sustainable protein sources for formulated feeds of this carnivorous fish is required. Soybean meal (SBM) and soy-derived proteins are the dominant protein sources in commercial aquafeeds due to their low-cost, availability and favorable amino acid profile. However, for Atlantic salmon, the inclusion of soybean meal (SBM), and soy protein concentrate (SPC) in certain combinations can impact gut health, which has consequences for immunity and welfare, limiting the use of soy products in salmonid feeds. This study sought to address this challenge by evaluating two gut health-targeted enhancements of SBM for inclusion in freshwater phase salmon diets: enzyme pre-treatment (ETS), and addition of fructose oligosaccharide (USP). These were compared with untreated soybean meal (US) and fish meal (FM). This study took a multi-disciplinary approach, investigating the effect on growth performance, gut microbiome, and behaviors relevant to welfare in aquaculture. This study suggests that both enhancements of SBM provide benefits for growth performance compared with conventional SBM. Both SBM treatments altered fish gut microbiomes and in the case of ETS, increased the presence of the lactic acid bacteria Enterococcus. For the first time, the effects of marine protein sources and plant protein sources on the coping style of salmon were demonstrated. Fish fed SBM showed a tendency for more reactive behavior compared with those fed the FM-based control. All fish had a similar low response to elicited stress, although ETS-fed fish responded more actively than US-fed fish for a single swimming measure. Furthermore, SBM-fed fish displayed lower repeatability of behavior, which may indicate diminished welfare for intensively farmed fish. The implications of these findings for commercial salmonid aquaculture are discussed.
International agreements recognize the importance of cooperative scientific research to conserve and promote sustainable development of a shared Atlantic Ocean. In 2022, the All-Atlantic Ocean Research and Innovation Alliance Declaration was signed. The All-Atlantic Declaration continues and extends relationships forged by the Galway Statement on Atlantic Ocean Cooperation and the Belém Statement on Atlantic Ocean Research and Innovation Cooperation. These efforts are consistent with programs, actions, and aims of the United Nations Decade of Ocean Science for Sustainable Development. In preparation for implementation of the All-Atlantic Declaration, members of the Marine Microbiome Working Group and the Marine Biotechnology Initiative for the Atlantic under the Galway and Belém Statements respectively, joined forces to call for cooperation across the Atlantic to increase marine microbiome and biotechnology research to promote ocean health and a sustainable bioeconomy. This article reviews the goals of the marine microbiome and biotechnology initiatives under the Galway and Belém Statements and outlines an approach to implement those goals under the All-Atlantic Declaration through a Blue Biotech and Marine Microbiome (BBAMM) collaboration.
To ensure year-round availability and stability of Atlantic mackerel caught in Icelandic waters during summer after intensive feeding, freezing is essential. Due to the high lipid content and sensitive lipid composition of the fish caught at this time, the fish industry requires detailed research to understand the mechanisms underlying the degradation processes occurring during storage and processing, in order to develop high-value hot-smoked products. Therefore, the impact of frozen storage at -25 ± 1.8 °C (for 6, 9, and 20 months) prior to hot-smoking, was investigated on the physicochemical, microbial, and sensory quality of deep-skinned, smoked fillets from well-fed Atlantic mackerel caught in late August. The stability of hot-smoked fillets stored at 1 ± 0.6 °C was then monitored for 28 days. Total aerobic viable counts (TVC) remained below acceptable thresholds due to the combined effects of brining, freezing, and hot-smoking, while Listeria monocytogenes was not detected in the hot-smoked products. Slow formation of oxidation products was observed during the chilled storage, especially in the fish frozen for 9 months. Minor lipid deterioration was also detected during sensory analysis, but all spoilage indices remained within acceptable thresholds for shelf-life. Frozen storage for up to 20 months thus effectively maintained the sensory acceptability and suitability of deep-skinned mackerel fillets, making them an excellent choice for the fish-smoking industry.
Photosymbiodemes are a special case of lichen symbiosis where one lichenized fungus engages in symbiosis with two different photosynthetic partners, a cyanobacterium and a green alga, to develop two distinctly looking photomorphs. We compared gene expression of thallus sectors of the photosymbiodeme-forming lichen Peltigera britannica containing cyanobacterial photobionts with thallus sectors with both green algal and cyanobacterial photobionts and investigated differential gene expression at different temperatures representing mild and putatively stressful conditions. First, we quantified photobiont-mediated differences in fungal gene expression. Second, because of known ecological differences between photomorphs, we investigated symbiont-specific responses in gene expression to temperature increases. Photobiont-mediated differences in fungal gene expression could be identified, with upregulation of distinct biological processes in the different morphs, showing that interaction with specific symbiosis partners profoundly impacts fungal gene expression. Furthermore, high temperatures expectedly led to an upregulation of genes involved in heat shock responses in all organisms in whole transcriptome data and to an increased expression of genes involved in photosynthesis in both photobiont types at 15 and 25°C. The fungus and the cyanobacteria exhibited thermal stress responses already at 15°C, the green algae mainly at 25°C, demonstrating symbiont-specific responses to environmental cues and symbiont-specific ecological optima.
Results: In general, lower levels of total As were detected in the samples collected in May (39.2–74.5 mg kg−1) compared to those collected in February (72.6–151 mg kg−1). The concentration of arsenate was found to consistently increase along the thallus from the holdfast/stipe (0.78–1.82 mg kg−1) to the decaying fronds (44.4–61.0 mg kg−1) in both months, and AsSug-SO3 was the dominant AsSugar in the majority of samples. The extraction efficiency was lower in fresh samples (64–77%) than in freeze-dried (95–116%) from the same month. Water-soluble, polar AsLipids, and residual As concentrations, were generally highest in February, and the non-polar AsLipids accounted for <0.42% of totAs in all samples.
In recent years the number of non-indigenous marine species has been increasing in Icelandic waters. In May 2019, a razor shell (Ensis sp.) was found for the first time in Iceland. Since then, living and empty razor shells have been discovered at several locations in Southwest Iceland. Upon morphological examination, the specimens were thought to belong to either Ensis leei or Ensis terranovensis, both native to the east coast of North America. Molecular analysis, using COI and 16S rRNA markers,
showed that the Icelandic specimens belong to the latter species. Native populations of Ensis terranovensis have, until now, only been reported in Newfoundland, Canada. This represents the first record of E. terranovensis outside its native range. The Newfoundland’s razor shell has most likely arrived in Iceland as larvae discharged with ballast water. Based on the sizes of specimens found in Iceland, the species is likely to have arrived several years prior to this first record. Presumably it has already established viable spawning populations that are likely to spread along the coast
Aquaculture of the lumpfish (Cyclopterus lumpus L.) has become a large, lucrative industry owing to the escalating demand for “cleaner fish” to minimise sea lice infestations in Atlantic salmon mariculture farms. We used over 10K genome-wide single nucleotide polymorphisms (SNPs) to investigate the spatial patterns of genomic variation in the lumpfish along the coast of Norway and across the North Atlantic. Moreover, we applied three genome scans for outliers and two genotype–environment association tests to assess the signatures and patterns of local adaptation under extensive gene flow. With our ‘global’ sampling regime, we found two major genetic groups of lumpfish, i.e., the western and eastern Atlantic. Regionally in Norway, we found marginal evidence of population structure, where the population genomic analysis revealed a small portion of individuals with a different genetic ancestry. Nevertheless, we found strong support for local adaption under high gene flow in the Norwegian lumpfish and identified over 380 high-confidence environment-associated loci linked to gene sets with a key role in biological processes associated with environmental pressures and embryonic development. Our results bridge population genetic/genomics studies with seascape genomics studies and will facilitate genome-enabled monitoring of the genetic impacts of escapees and allow for genetic-informed broodstock selection and management in Norway.
Production of fish meal and plant-based feed proteins continues to increase to meet the growing demand for seafood, leading to impacts on marine and terrestrial ecosystems. Microbial proteins such as single-cell proteins (SCPs) have been introduced as feed alternatives since they can replace current fish feed ingredients, e.g., soybean, which are associated with negative environmental impacts. Microbial protein production also enables utilization of grain processing side-streams as feedstock sources. This study assesses the environmental impacts of yeast-based SCP using oat side-stream as feedstock (OS-SCP). Life-cycle assessment with a cradle-to-gate approach was used to quantify global warming, freshwater eutrophication, marine eutrophication, terrestrial acidification, land use, and water consumption of OS-SCP production in Finland. Dried and wet side-streams of oat were compared with each other to identify differences in energy consumption and transportation effects. Sensitivity analysis was performed to examine the difference in impacts at various locations and fermentation times. Benchmarking was used to evaluate the environmental impacts of OS-SCP and other feed products, including both conventional and novel protein products. Results highlight the importance of energy sources in quantifying the environmental performance of OS-SCP production. OS-SCP produced with dried side-streams resulted in higher global warming (16.3 %) and water consumption (7.5 %) than OS-SCP produced from wet side-streams, reflecting the energy and water requirements for the drying process. Compared with conventional products, such as soy protein concentrates, OS-SCP resulted in 61 % less land use, while exacerbating the environmental impacts in all the other categories. OS-SCP had more impact on global warming (205–754 %), water consumption (166–1401 %), freshwater eutrophication (118–333 %), and terrestrial acidification (85–340 %) than other novel products, including yeast protein concentrate, methanotrophic bacterial SCP, and insect meal, while lowering global warming (11 %) and freshwater eutrophication (20 %) compared with dry microalgae biomass.