The aim of this study was to compare the effects of different storage temperatures (+2°C, -4°C, -12°C, -18°C and -24°C) and time (0, 1, 3 and 6 weeks) on the quality of heavily salted cod. The color, water content, water holding capacity (WHC), cooking yield, total volatile basic nitrogen (TVB-N) and trimethylamine (TMA) of the samples were determined. Results showed that the whiteness of the salted cod decreased slightly, whereas the yellow/orange color increased during the storage period. The WHC and cooking yield increased and were inversely related to water content. The TVB-N value increased slightly, whilst a lightly decrease in TMA value was observed. Storage at -4°C and lower temperatures had a detrimental influence on the color of the product which is the main quality criterion for salted cod. Therefore, it is not suitable to store the product at -4°C or lower temperatures.
Flokkur: Greinar
Background
Approximately half of the mitochondrial genome inherent within 546 individual Atlantic salmon (Salmo salar) derived from across the species’ North Atlantic range, was selectively amplified with a novel combination of standard PCR and pyro-sequencing in a single run using 454 Titanium FLX technology (Roche, 454 Life Sciences). A unique combination of barcoded primers and a partitioned sequencing plate was employed to designate each sequence read to its original sample. The sequence reads were aligned according to the S. salar mitochondrial reference sequence (NC_001960.1), with the objective of identifying single nucleotide polymorphisms (SNPs). They were validated if they met with the following three stringent criteria: (i) sequence reads were produced from both DNA strands; (ii) SNPs were confirmed in a minimum of 90% of replicate sequence reads; and (iii) SNPs occurred in more than one individual.
Results
Pyrosequencing generated a total of 179,826,884 bp of data, and 10,765 of the total 10,920 S. salar sequences (98.6%) were assigned back to their original samples. The approach taken resulted in a total of 216 SNPs and 2 indels, which were validated and mapped onto the S. salar mitochondrial genome, including 107 SNPs and one indel not previously reported. An average of 27.3 sequence reads with a standard deviation of 11.7 supported each SNP per individual.
Conclusion
The study generated a mitochondrial SNP panel from a large sample group across a broad geographical area, reducing the potential for ascertainment bias, which has hampered previous studies. The SNPs identified here validate those identified in previous studies, and also contribute additional potentially informative loci for the future study of phylogeography and evolution in the Atlantic salmon. The overall success experienced with this novel application of HT sequencing of targeted regions suggests that the same approach could be successfully applied for SNP mining in other species.
Microsatellite genotyping is a common DNA characterization technique in population, ecological and evolutionary genetics research. Since different alleles are sized relative to internal size-standards, different laboratories must calibrate and standardize allelic designations when exchanging data. This interchange of microsatellite data can often prove problematic. Here, 16 microsatellite loci were calibrated and standardized for the Atlantic salmon, Salmo salar, across 12 laboratories. Although inconsistencies were observed, particularly due to differences between migration of DNA fragments and actual allelic size (‘size shifts’), inter-laboratory calibration was successful. Standardization also allowed an assessment of the degree and partitioning of genotyping error. Notably, the global allelic error rate was reduced from 0.05 ± 0.01 prior to calibration to 0.01 ± 0.002 post-calibration. Most errors were found to occur during analysis (i.e. when size-calling alleles; the mean proportion of all errors that were analytical errors across loci was 0.58 after calibration). No evidence was found of an association between the degree of error and allelic size range of a locus, number of alleles, nor repeat type, nor was there evidence that genotyping errors were more prevalent when a laboratory analyzed samples outside of the usual geographic area they encounter. The microsatellite calibration between laboratories presented here will be especially important for genetic assignment of marine-caught Atlantic salmon, enabling analysis of marine mortality, a major factor in the observed declines of this highly valued species.
Aqualysin I, is a subtilisin-like serine proteinase, from the thermophilic bacterium Thermus aquaticus. It is predicted that the enzyme contains a salt bridge, D17-R259, connecting the N- and C-terminal regions of the enzyme. Previously we reported on the stabilizing effect of the incorporation of a salt bridge at a corresponding site in VPR, a related cold adapted enzyme from a marine Vibrio sp. Here we describe the effect of the reverse change, i.e. the elimination of the salt bridge on the thermal stability and kinetic properties of aqualysin I. Deletion of the putative salt bridge in the D17N mutant of the enzyme destabilized the enzyme by 8-9 °C in terms of T50%, determined by thermal inactivation and over 4°C in Tm, as measured from melting curves of the inhibited enzyme. The mutation, however, had no significant effect on the kinetic parameters of the enzyme under standard assay conditions.
Marine microorganisms contribute to the health of the global ocean by supporting the marine food web and regulating biogeochemical cycles. Assessing marine microbial diversity is a crucial step towards understanding the global ocean. The waters surrounding Iceland are a complex environment where relatively warm salty waters from the Atlantic cool down and sink down to the deep. Microbial studies in this area have focused on photosynthetic micro- and nanoplankton mainly using microscopy and chlorophyll measurements. However, the diversity and function of the bacterial and archaeal picoplankton remains unknown. Here, we used a co-assembly approach supported by a marine mock community to reconstruct metagenome-assembled genomes (MAGs) from 31 metagenomes from the sea surface and seafloor of four oceanographic sampling stations sampled between 2015 and 2018. The resulting 219 MAGs include 191 bacterial, 26 archaeal and two eukaryotic MAGs to bridge the gap in our current knowledge of the global marine microbiome.
Channel catfish (Ictalurus punctatus) muscle was subjected to 6 protein extraction and precipitation techniques using acid solubilization (pH 2.0, 2.5, and 3.0) or alkaline solubilization (pH 10.5, 11.0, 11.5) followed by precipitation at pH 5.5. The catfish protein isolate was compared with ground defatted white muscle. Alkali-processed catfish showed increased gel rigidity, gel strength, and gel flexibility compared to acid-processed catfish, which exhibited inconsistent functional performance, increasing and decreasing gel rigidity, gel strength, and gel flexibility. The gel rigidity (G′) at pH 3.0 in the absence of salt had the highest G′ of the acid treatments and was not significantly different from the alkaline-treated catfish muscle (P > 0.05). However in the presence of added salt pH treatment it had the lowest G′ and was different from alkaline treatments (P < 0.05) during break force testing. These results show that pH-shift processing of channel catfish muscle provides highly functional isolates with a potentially broad range of applications. This range of applications is possible due to the modification of the textural properties of catfish muscle protein produced using different acidic or alkaline pH solubility treatments.
The effect of using polyphosphates during prebrining and the effect of prebrining time of cold water shrimp (Pandalus borealis) was studied with low field nuclear magnetic resonance (LF-NMR) transverse relaxation time measurements (benchtop and unilateral) and near infrared (NIR) spectroscopy with the aim of improving shrimp processing. Strong calibrations were obtained for moisture content and water-holding capacity (WHC) using the NIR technique. Multivariate analysis indicated significant correlations between benchtop NMR parameters and moisture content and WHC, as measured with physicochemical methods and NIR spectroscopy. Significant correlations were also observed between NMR parameters and muscle pH, protein content, and phosphate content. The study showed that LF-NMR contribute to improved understanding of the shrimp brining process and to improved process control on-line or at-line, especially in combination with NIR measurements. However, optimization of the unilateral device is necessary.
Fish protein hydrolysates (FPH) possess various bioactivities making them a desirable ingredient in health foods. Saithe is an underutilized fish species and an excellent candidate for FPH. To produce high quality FPH removing undesirable components prior to the hydrolysis process is preferred and possible via the pH-shift process. The objective was to produce and investigate the properties of hydrolyzed protein isolates produced from minced saithe trimmings. Saithe trimmings were minced, homogenized in water and subjected to two variations of a pH shift process with (A) and without (B) dewatering. The latter process has the advantage of being less complicated and less expensive which is beneficial to the industry. Both systems were adjusted to 3% protein, pH 8 and 45 °C and subjected to enzyme hydrolysis. Both hydrolysis processes led to almost identical SDS-page peptide makeup. Both FPHs had similar antioxidative activities evaluated using oxygen radical absorbance capacity (ORAC), iron chelation ability and (DPPH) radical scavenging ability assays. FPH from process A had significantly higher ACE inhibition ability compared to FPH from process B.
These results demonstrate that saithe FPH has good antioxidative activities and a strong ability to inhibit ACE, and may thus have a potential as a bioactive food ingredient.
The quality and safety of food products is influenced by the presence of spoilage and pathogenic microorganisms. The presence and concentration of spoilage microorganisms is the main factor which determines the shelf life of a food product. The presence of pathogens could cause serious health problems. In order to simulate and predict the shelf life of Icelandic cod loins stored in styrofoam boxes in an actual supply chain from Iceland to France, a mathematical model for microbial growth is developed. Three specific spoilage organisms (SSO) are considered: Pseudomonas spp. (Ps), Photobacterium phosphoreum (Pp) and H2S-producing bacteria (H2S). The Baranyi and Roberts model is used for prediction of microbial growth in cod loins. The temperature dependence of the growth rate is taken into account through the square root model as a secondary model. Previous laboratory data are used for developing the primary and secondary models. The laboratory data from field trials, collected under dynamic temperature conditions, are used for calibration of the lag phase for each spoilage bacterium. Temperature recordings along with microbial and sensory analyses from the different cod groups are collected to test and validate the shelf life prediction (SLP) models. Finally, the model predictions are compared with shelf life data obtained by sensory evaluation of cooked products performed during the trials. Keywords: Icelandic cod, microbial growth models, shelf life prediction, field trials.
Food-borne listeriosis, caused by Listeria monocytogenes (Lm), is relatively rare but the relatively high rate of fatality (20–30%) compared to other food-borne microbial pathogens such as Salmonella makes it a serious disease. The foodstuff is recognised as the primary route of transmission for human exposure. A wide variety of food or raw material may become contaminated with Lm but the majority of listeriosis cases are related to ready-to-eat (RTE) food. The important factor related to food-borne listeriosis is that Lm can grow under low (refrigerated) temperatures when given sufficient time. Therefore, RTE products with long shelf life are under risk with respect to growth of Lm to critical concentrations. A stochastic model for the growth of Lm with the inhibiting effect of lactic acid bacteria (LAB) in cold smoked salmon (CSS) was developed. An existing deterministic model for the growth of Lm was adapted by adding the Winner stochastic process in order to simulate the growth of Lm. The Poisson distribution is used to represent the initial count (occurrence) of Lm. A deterministic model for growth of LAB is used and the inhibiting effects of Lm and LAB on each other are taken into account. The Beta-Poisson model is used for estimating the dose response. The model has been tested during field trials with CSS performed in August 2010. The salmon was slaughtered in Norway and transported to France where it was processed. The model, implemented within the QMRA module, indicated that growth of Lm would occur in the CSS samples investigated.
