Community engagement in the research process is more than communication and outreach. It is a process of co-production of knowledge. The co-production of knowledge starts and ends at the “small” local level but is embedded in “big” processes that are nested in academic and research institution priorities. This chapter problematizes the issues of small-to-big science and reflects on limitations related to community engagement in research such as community research fatigue, un-standardized research ethics protocols across research institutions, and limitations in funding bodies’ budget schemes. It considers lessons learned by theorizing a “sliding scale of community engagement” that can be used to conceptualize the definitions of community engagement activities within a large research project. The chapter also places emphasis on discussion of the community-engagement experiences of the Nordforsk-funded Nordic Centre of Excellence project Arctic Climate Predictions: Pathways to Resilient, Sustainable Societies (ARCPATH). This project has facilitated excellent collaboration with our informants in our research communities and hence provides a significant example of the co-production of knowledge that we seek to encourage.
Flokkur: Greinar
Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs.
Although the metabolism of phytochelatins and higher polyamines are linked with each other, the direct relationship between them under heavy metal stress has not yet been clarified. Two approaches were used to reveal the influence of polyamine content on cadmium stress responses, particularly with regard to phytochelatin synthesis: putrescine pre-treatment of rice plants followed by cadmium stress, and treatment with the putrescine synthesis inhibitor, 2-(difluoromethyl)ornithine combined with cadmium treatment. The results indicated that putrescine pre-treatment enhanced the adverse effect of cadmium, while the application of 2-(difluoromethyl)ornithine reduced it to a certain extent. These differences were associated with increased polyamine content, more intensive polyamine metabolism, but decreased thiol and phytochelatin contents. The gene expression level and enzyme activity of phytochelatin synthase also decreased in rice treated with putrescine prior to cadmium stress, compared to cadmium treatment alone. In contrast, the inhibition of putrescine synthesis during cadmium treatment resulted in higher gene expression level of phytochelatin synthase. The results suggest that polyamines may have a substantial influence on phytochelatin synthesis at several levels under cadmium stress in rice.
In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.
Background: Obesity is characterized by chronic low-grade inflammation and associated with type 2 diabetes. Seaweed is one of the largest producers of biomass in the marine environment and is a rich arsenal of functional ingredients that may possess the potential to prevent type 2 diabetes.
Objective: The aim was to investigate the effects of seaweed extract on glucose metabolism and markers of inflammation in overweight and obese individuals.
Methods: Participants (N=76, ≥40 years, body mass index ≥25 kg/m2) who volunteered for this 10- week randomized, controlled, doubly blinded intervention study, were randomized into an intervention group (seaweed extract, 3 capsules=1200 mg/day) or a control group (placebo, 3 capsules/day). The extract derived from the brown seaweed bladder wrack (Fucus vesiculosus). At baseline and endpoint of the study, fasting samples were analysed for blood glucose, insulin, inflammation markers, liver enzymes and creatinine (renal function).
Results: Drop out was 11.8% and not significantly different between groups. Fasting blood glucose and insulin were improved at the endpoint in the intervention group, but no changes were observed in the control group (corrected endpoint differences between groups: glucose=0.61 mmol/L, P=0.038; insulin=0.72 μU/L, P=0.038). Measures of inflammation, liver enzymes and renal function did not change significantly during the study.
Conclusion: Ingestion of seaweed extract over 10 weeks improves glucose metabolism without affecting measures of inflammation, liver function or renal function.
With the fast rising population, the discussion focused around need for novel sustainable protein sources and meat replacement is also increasing. Meat analogues have already taken important place in this discussion with a fast growth of meat analogue industry. Rapeseed (or canola) is very promising alternative source of a novel protein on the plant-based market that can be used as a meat analogue ingredient. However, meat analogues containing rapeseed protein can only be successful if these products are acceptable to consumers. This study presents results of a cross-cultural study from five European countries on female consumers’ attitudes towards meat analogue containing rapeseed protein, who are also regular meat consumers. The results suggest that consumers’ attitude towards meat analogue was significantly influenced by the attitude towards its main ingredient, rapeseed protein. These effects were similar across investigated countries pointing to the fact that main ingredient of the meat analogue, rapeseed protein, defines and differentiates meat analogue delineating consumer acceptance. Nevertheless, consumers’ intention to substitute meat protein in the diet is another crucial component for forming consumers’ attitudes towards meat analogues and their acceptance, while the effect of attitude towards using plant protein in food production was less prominent. The results advise that in order to make meat analogue more acceptable to meat consumers, the focus should be on the main meat analogue ingredient where the consumers’ intention to substitute meat protein in the diet could boost or inhibit this acceptance.
The island of Surtsey was formed in 1963–1967 on the offshore Icelandic volcanic rift zone. It offers a unique opportunity to study the subsurface biosphere in newly formed oceanic crust and an associated hydrothermal-seawater system, whose maximum temperature is currently above 120°C at about 100m below surface. Here, we present new insights into the diversity, distribution, and abundance of microorganisms in the subsurface of the island, 50years after its creation. Samples, including basaltic tuff drill cores and associated fluids acquired at successive depths as well as surface fumes from fumaroles, were collected during expedition 5059 of the International Continental Scientific Drilling Program specifically designed to collect microbiological samples. Results of this microbial survey are investigated with 16S rRNA gene amplicon sequencing and scanning electron microscopy. To distinguish endemic microbial taxa of subsurface rocks from potential contaminants present in the drilling fluid, we use both methodological and computational strategies. Our 16S rRNA gene analysis results expose diverse and distinct microbial communities in the drill cores and the borehole fluid samples, which harbor thermophiles in high abundance. Whereas some taxonomic lineages detected across these habitats remain uncharacterized (e.g., Acetothermiia, Ammonifexales), our results highlight potential residents of the subsurface that could be identified at lower taxonomic rank such as Thermaerobacter, BRH-c8a (Desulfallas-Sporotomaculum), Thioalkalimicrobium, and Sulfurospirillum. Microscopy images reveal possible biotic structures attached to the basaltic substrate. Finally, microbial colonization of the newly formed basaltic crust and the metabolic potential are discussed on the basis of the data.
This study investigated the effect of seaweed supplementation in dairy cow diets on milk yield, basic composition, and mineral concentrations. Thirty-seven Icelandic cows were split into three diet treatments: control (CON, no seaweed), low seaweed (LSW, 0.75% concentrate dry matter (DM), 13–40 g/cow/day), and high seaweed (HSW, 1.5% concentrate DM, 26–158 g/cow/day). Cows were fed the same basal diet of grass silage and concentrate for a week, and then were introduced to the assigned experimental diets for 6 weeks. The seaweed mix of 91% Ascophyllum nodosum: 9% Laminaria digitata (DM basis), feed, and milk samples were collected weekly. Data were analyzed using a linear mixed effects model, with diet, week, and their interaction as fixed factors, cow ID as random factor, and the pre-treatment week data as a covariate. When compared with CON milk, LSW and HSW milk had, respectively, less Se (−1.4 and −3.1 μg/kg milk) and more I (+744 and +1649 μg/kg milk), while HSW milk also had less Cu (−11.6 μg/kg milk) and more As (+0.17 μg/kg milk) than CON milk. The minimal changes or concentrations in milk for Se, Cu, and As cannot be associated with any effects on consumer nutrition, but care should be taken when I-rich seaweed is fed to cows to avoid excessive animal I supply and milk I concentrations.
Producing products of reliable quality is vitally important to the food and beverage industry. In particular, companies often fail to ensure that the sensory quality of their products remains consistent, leading to the sale of goods which fail to meet the desired specifications or are rejected by the consumer. This book is a practical guide for all those tasked with using sensory analysis for quality control (QC) of food and beverages.