Reports

The effects of pre ‐ salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23Na MRI, 23Na NMR, low ‐ field NMR and physicochemical analysis and 23Na MRI, 23Na NMR, low range NMR and physical property measurements

Published:

31/03/2014

Authors:

María Guðjónsdóttir, Ásbjörn Jónsson, Magnea G. Karlsdóttir, Sigurjón Arason, Amidou Traoré

Supported by:

AVS Fisheries Research Fund (R45-12)

Contact

Sigurjón Arason

Chief Engineer

sigurjon.arason@matis.is

The effects of pre ‐ salting methods on salt and water distribution of heavily salted cod, as analyzed by 1H and 23On MRI, 23Na NMR, low ‐ field NMR and physicochemical analysis / Impact of pre-salinization methods on salt and water distribution of fully salted cod products, analyzed by 1H and 23On MRI, 23Na NMR, low range NMR and physical property measurements

The effect of different pre-salting methods (injection salting with or without phosphate, pickling and brine salting) on the water and salt distribution in dry salted cod fillets (Gadus morhua) was investigated by proton and sodium NMR and MRI methods. In addition, the salt and water content were assessed, as well as water resistance. The results indicated that spraying with salt and phosphate resulted in a more uneven water distribution in the fillets compared to other pre-salting methods. On the other hand, brine-salted fillets had the least homogeneity in salt distribution. Fillets from all sample groups had stains with unsaturated brine, but such stains can increase the risk of microbial damage in the fillets during storage. The effect of the pre-salting methods remains throughout the processing process on both fully salted and dried products. As homogeneous water and salt distribution were not achieved with the pre-salting methods studied, further research into the salting process is needed.

The effect of different pre ‐ salting methods (brine injection with salt with / without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pickle salting had the least heterogeneous salt distribution. Fillets from all treatments contained spots with unsaturated brine, increasing the risk of microbial denaturation of the fillets during storage. Effects from the pre ‐ salting treatments remained throughout the processing line to both dry salted and dried products. Since a homogeneous water and salt distribution was not achieved with the studied pre-salting methods, further optimizations of the salting process, including the pre-salting and dry salting steps, must be made in the future.

View report
EN