Reports

Development of QIM and shelf life of fresh mackerel (Scomber scombrus) / Development of QIM and shelf life of fresh mackerel (Scomber scombrus)

Published:

01/03/2012

Authors:

Aðalheiður Ólafsdóttir, Elvar Steinn Traustason, Ásbjörn Jónsson, Kolbrún Sveinsdóttir, Kristín Anna Þórarinsdóttir

Supported by:

AVS Fisheries Research Fund (R 11 037‐010)

Contact

Aðalheiður Ólafsdóttir

Sensory evaluation manager

adalheiduro@matis.is

Development of QIM and shelf life of fresh mackerel (Scomber scombrus) / Development of QIM and shelf life of fresh mackerel (Scomber scombrus)

The aim of the project was to examine changes that occur in mackerel during ice storage. Develop a QIM scale for fresh mackerel and compare it with the results of cooked fish assessments and QDA (quantitative descriptive analysis) to determine the end of shelf life. Based on QDA results, it can be concluded that mackerel stored for 9 days on ice has reached the limit of shelf life. Taste and odor symptoms (fresh oil) are then reduced and damage symptoms (cravings and bitterness) take over.

The aim of the project was to look at the changes in mackerel at storage on ice. Develop a QIM spectrum for fresh mackerel and compare with cooked fish, QDA (quantitative descriptive analysis) to decide maximum shelf life. From the QDA results, one can conclude that maximum shelf life for fresh mackerel is 9 days on ice. At that time freshness in taste and odor are decreasing and characteristic of spoilage (rancidity and bitter) dominates.

View report

Reports

Development of Quality Index Method and shelf life of thawed mackerel (Scomber scombrus) / Development of Quality Index Method and storage life of thawed mackerel (Scomber scombrus)

Published:

01/07/2010

Authors:

Kolbrún Sveinsdóttir, Patricia Miranda Alfama, Aðalheiður Ólafsdóttir, Emilía Martinsdóttir

Supported by:

AVS Fisheries Research Fund, UNU School of Fisheries, United Nations University

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

Development of Quality Index Method and shelf life of thawed mackerel (Scomber scombrus) / Development of Quality Index Method and storage life of thawed mackerel (Scomber scombrus)

The QIM method (Quality Index Method) is an objective, fast and reliable sensory evaluation method that has been developed to assess the freshness of fish. The aim of the study was to prepare a QIM rating scale for thawed mackerel (Scomber scombrus) stored in ice at 0 ° C and to test its use in a shelf life test. The mackerel was evaluated by sensory evaluation according to QIM and DA method (generic descriptive analysis), microorganisms (TVC and H2S producing) were also counted and histamine was measured for up to 9 days after thawing. The result of the study was the QIM method for thawed mackerel which was developed and tested in a shelf life test. Quality factor - QI (total grade) increased linearly with ice shelf life. The QIM method for thawed mackerel is based on an assessment of quality factors such as the appearance of redness, texture, color and shape of the eyes, the color and odor of the gills, the appearance of mucus in the gill and gill leaf and the intestinal dissolution, and the total fish can reach a maximum of 19. The project also developed a method (general descriptive analysis-DA) for evaluating boiled mackerel. The main characteristics of the mackerel immediately after thawing were the smell and taste of fresh oil, the smell of metal and the sweet smell / taste that faded with the storage period. What limited the shelf life were sensory properties that describe the symptoms of damage, such as the stench and taste that can be noticeable in fatty fish after prolonged cold storage. According to a sensory assessment of boiled mackerel fillets, the shelf life of thawed mackerel after five months of cold storage is about 4-6 days. The total number of micro-organisms and H2S-producing micro-organisms was lower than is usually seen at the end of the shelf-life of micro-organisms. Histamine was not detected (<5 ppm) in thawed mackerel during the 9-day ice-storage period.

The Quality Index Method (QIM) is an objective, rapid and reliable sensory method. The aim of the present study was to develop a QIM scheme for frozenthawed Atlantic mackerel (Scomber scombrus) stored in ice at 0 ° C and evaluate the scheme in a shelf life study. The mackerel was evaluated with sensory evaluation (QIM and generic descriptive analysis (DA)), microbial counts (Total viable counts (TVC) and H2S-producing bacteria) were estimated and histamine measured for up to nine days. The main result of this study vas the QIM scheme to evaluate freshness of frozen-thawed Atlantic mackerel storage in ice which was developed and tested in a shelf life study. The quality index - QI (sum of scores) increased linearly with storage time on ice. The QIM for thawed mackerel is based on the evaluation of quality parameters dealing with the appearance on back and belly side, texture, color and shape of eyes, mucus, color and odor of gills and appearance of gill filaments and dissolution of viscera. The maximum sum of scores (QI) can be 19. A method to evaluate cooked mackerel was also developed (general descriptive analysis-DA). Newly thawed mackerel had fresh oil, metallic and sweet odors and flavors. The main limitation of shelf life in chilled storage after thawing were sensory characteristics describing spoilage such as rancid odor and flavor which can be prominent in fatty fish species after extended frozen storage. According to sensory evaluation of cooked mackerel, the shelf life of thawed mackerel after five months of frozen storage is around 4-6 days. Counts of TVC and H2S producing bacteria were relatively low at the end of shelf life. Histamine was not detected (<5 ppm) in the thawed mackerel during the storage time of nine days on ice.

View report

Reports

Optimal storage conditions for fresh farmed tilapia (Oreochromis niloticus) fillets

Published:

01/12/2009

Authors:

Emilia Martinsdóttir, Cyprian Ogombe Odoli, Hélène L. Lauzon, Kolbrún Sveinsdóttir, Hannes Magnússon, Sigurjón Arason, Ragnar Jóhannsson

Supported by:

Technology Development Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

Optimal storage conditions for fresh farmed tilapia (Oreochromis niloticus) fillets

The purpose of the experiments was to find the best storage conditions for fresh tilapia fillets by determining the shelf life by sensory evaluation, microbial counts and physical and chemical measurements. Nile tilapia (Oreochromis niloticus) raised in a renewable water cycle system was filleted and packed in 100% air and aerated packages 50% CO2: 50% N2 MA for storage at 1˚C and -1˚C. The development of the QIM rating scale and the sensory evaluation properties of fresh and cooked tilapia fillets and the use of the scale in shelf life testing are described. A linear relationship was found between the quality factor and the storage time (r> 0.93) for all storage groups. The results of sensory evaluation and microbial counts showed that fillets packed in air had a shelf life of 13-15 days at 1˚C and 20 days at -1˚C. At the end of shelf life in air packs, the total number of micro-organisms and the number of pseudomonads micro-logs were 7 CFU / g in meat. In fillets in aerated packages, the coating phase was longer and the total number of microorganisms was below log 4 CFU / g after 27 days of storage at both 1˚C and -1˚C. However, aerobic conditions adversely affected the color of the fillets shortly after packing, but the color of the fillets significantly affected buyers' choices. Chemical measurements such as TVB-N and TMA were not a good measure of damaged fillet fillets. The best storage conditions for tilapia fillets are air packing and storage at a constant low temperature of -1 ° C. This report is based on the main findings of Cyprian Ogombe Odoli's master's project.

The main aim was to establish optimal storage conditions for fresh tilapia fillets by determining its shelf life by sensory and microbiological evaluation, as well as monitoring its physical-chemical properties. Nile tilapia (Oreochromis niloticus) farmed in recirculation aquaculture system was filleted and packaged in 100% air and 50% CO2: 50% N2 MA prior to storage at different temperature; 1˚C and -1˚C. This report further describes the development of a Quality Index Method (QIM) scheme and a sensory vocabulary for fresh and cooked tilapia fillets accordingly and application in a shelf life study. The application of the QIM scheme for tilapia fillets showed a linear relationship between QIM scores and storage time (r> 0.93) for all samples. The results from sensory analysis of cooked samples as well as microbial growth indicated that fillets packaged in 100% air had a shelf life of 13-15 days during storage at 1˚C and 20 days during storage at -1˚C. At the end of shelf life in 100% air packaged groups, TVC and pseudomonads counts reached log 7 CFU / g in flesh. In MA packaged fillets, the lag phase and generation time of bacteria was extended and recorded total counts below the limit for consumption (<log 4 CFU / g) up to 27 days of storage at both 1˚C and -1˚C. However, MA packaging negatively affected the color characteristics of the fillets soon after packaging (as from d6) but color is an important indicator of quality and a major factor in influencing retail purchase decisions. Chemical analyzes (TVB-N and TMA) were not good indicators of spoilage of tilapia fillets in the present study. 100% air packaging at -1˚C storage temperature is the optimal storage conditions for fresh tilapia fillets. The report is based on the master thesis of Cyprian Ogombe Odoli.

View report
EN