Reports

Development of industrialized cod farming: Control of growth and sexual maturation with advanced lighting equipment / Improved lighting technology for regulating sexual maturation of farmed cod

Published:

01/11/2009

Authors:

Rannveig Björnsdóttir, Jónína Þ Jóhannsdóttir, Jón Árnason, Þorleifur Eiríksson, Cristian Gallo, Böðvar Þórisson, Þorleifur Ágústsson, Björn Þrándur Björnsson, Guðbjörg Stella Árnadóttir

Supported by:

AVS Fisheries Research Fund

Development of industrialized cod farming: Control of growth and sexual maturation with advanced lighting equipment / Improved lighting technology for regulating sexual maturation of farmed cod

The overall goal of the project was to improve farming techniques in cod farming with the use of a new type of light in the goal of controlling the sexual maturity of cod. These are lights that emit a single wavelength that is better distributed over the aqueous phase compared to halogen lights that are traditionally used, and this new type of light has proven to be very effective in preliminary research. It was also investigated whether light control immediately at the juvenile stage could possibly contribute to this effect in the heifer fire. Continuous treatment with the lights at the juvenile stage did not affect the juveniles' growth, but there were indications of fewer growth defects in the juveniles. However, light control at the juvenile stage seemed to have a negative effect on the growth of the fish after transport to sea cages, in addition to which there were many unexplained declines in that group. Light control of fish in cages had a positive effect on the growth of the fish compared to fish kept during the natural light cycle in sea cage farming. The project also developed and standardized new methods for measuring the concentration of growth hormones in cod, and the method proved to be both sensitive and safe. The relationship between growth rate and concentration of growth hormone in the blood of the fish could not be demonstrated in this study, but the method offers great future potential in studies of, for example, the growth rate of wild cod. The project also carried out a detailed study of the effects of seaweed farming on the diversity and species composition of benthic fauna under pens. Extensive changes in the species composition of benthic animals were observed despite a small load associated with fire in the pens over a three-year period.

The overall aim of the project was to improve cod farming technology by delaying sexual maturation of cod by the use of a new lighting technology. The novel lights emit only one wavelength that is more effectively dispersed in water compared to the metal halogen lights traditionally used. Continuous manipulation using the novel light technology during the juvenile stage did not affect fish growth or survival. Indications of reduced frequency of deformities were however observed in this group. Light manipulation during the juvenile stage was further found to negatively affect fish growth following transfer to sea cages and significantly higher unexplained loss of fish was observed in this group. Continuous light manipulation during on growing in sea cages resulted in significantly improved growth of the fish compared with fish exposed to ambient light. New methods were furthermore developed for measuring the concentration of growth hormones in cod. A relationship between fish growth and the concentration of growth hormones could not be established. The method however provides an important tool for future studies of the growth of eg wild cod. Detailed studies of species diversity in bottom layers below the sea cages were also carried out, revealing extensive changes in species composition during the three-year study.

View report

Reports

Prevention in aquaculture. Part A - Prevention in cod farming

Published:

01/12/2007

Authors:

Hélène L. Lauzon, Sigríður Guðmundsdóttir, Agnar Steinarsson, Matthías Oddgeirsson, Bergljót Magnadóttir, Ívar Örn Ásgeirsson, Berglind Gísladóttir, Eyjólfur Reynisson, Sólveig K. Pétursdóttir, Þuríður Ragnarsdóttir, Maja Herold Pedersen, Birgitte B. Budde, Bjarnheiður K. Guðmundsdóttir

Supported by:

AVS Fund (R 41-04)

Prevention in aquaculture. Part A - Prevention in cod farming

The aim of Part A was to increase the efficiency of cod farming by increasing the survival of eggs / larvae and promoting increased growth of larvae in starter feeding. The results show that the composition of the microbial flora explained the declines better than the total microbial or Vibrio counts. Extensive analysis of the microflora of aquaculture systems and larval stage results led to the determination of desirable and undesirable bacteria. Chemical measurements in cod farming at the roe and larval stages showed that little accumulation of substances took place in the farmed liquid, except at the beginning of dry feeding. The choice of additive bacteria was decided on the basis of a specific screening process and expected use in cod farming. The use of supplemental bacteria in bathing eggs and / or larvae was examined, but continuous bathing from the egg stage onwards to the larval stage usually led to better results, greater growth and vitality. The use of complementary bacteria also affected the microflora and the development of larvae shortly after hatching, which was confirmed, among other things, by measurements of proteins from the immune system. The use of supplemental bacteria in juvenile farming was investigated and indicated an increase in growth rate. It has not been possible to prove that increased disease tolerance can be achieved with the use of supplementary bacteria in juvenile farming, but there were positive indications of this. The main bottlenecks in the development of prevention methods were the live food animals, which caused a high microbial load. The development of probiotic rodents with other complementary microorganisms did not work well. Investigations into the infectious potential of the cod bacteria in cod fry showed that they did not cause any symptoms or cause death.

The aim was to increase the competitiveness and success of cod aquaculture by increasing survival and development from hatching through the larval stage. This was achieved by developing preventive methods to control important chemical and biological parameters. The results revealed that differences in microbiota composition between different larval treatments explained the success or lack thereof, better observed than total microbial or Vibrio counts of rearing water or larvae. Microbiota analysis and survival rates have hence led to the definition of desirable and undesirable bacteria, the latter being especially Vibrio sp. Assessment of selected chemical parameters was performed at pre- and posthatching periods, indicating NH3 build-up in the rearing water upon dry feeding. The selection of probiotic bacteria was based on a specific screening and their anticipated use in cod farming. Application of selected bacteria was tested for surface treatment of eggs and / or larval bathing, and the continuous use before and after hatching usually led to increased survival, growth and tolerance as well as influencing larval microbiota and immunological development. Application of selected probiotic bacteria was also tested with cod juveniles with increased growth rate. Disease resistance of probiotic-fed juveniles to fish pathogens was not confirmed. Development of probiotic rotifers proved difficult due to their high microbial load. Probiotic strains applied ip to cod juveniles were not found to be virulent

View report
EN