Peer-reviewed articles

Antioxidative efficacy of alkali treated tilapia protein hydrolysates: A comparative study of five enzymes

Authors: Raghavan, S. and Hörður G. Kristinsson

Version: Journal of Agricultural Food Chemistry

Publication year: 2008


The antioxidant activities of alkali-treated tilapia protein hydrolysates were determined by their ability to inhibit the formation of lipid hydroperoxides (PV) and thiobarbituric acid reactive substances (TBARS) in a washed muscle model system and by their ability to inhibit DPPH free radicals and chelate ferrous ion in an aqueous solution. Protein isolates were prepared from tilapia white muscle using alkali solubilization at pH 11.0 and reprecipitation at pH 5.5. Protein hydrolysates were prepared by hydrolyzing the isolates using five different enzymes, Cryotin F, Protease A Amano, Protease N Amano, Flavourzyme, and Neutrase, to 7.5, 15, and 25% degrees of hydrolysis (DH). All of the protein hydrolysates significantly (p <0.05) inhibited the development of TBARS and PV. The antioxidant activity of the hydrolysates increased with the DH. Also, the antioxidant activity of the hydrolysates varied significantly (p <0.05) among the different enzymes. The ability of different enzyme-catalyzed protein hydrolysates to scavenge DPPH radicals was not reflected in their ability to inhibit oxidation in a washed tilapia model system. In a washed muscle model system, the hydrolysates prepared using Cryotin F were most effective and the hydrolysates prepared using Flavourzyme and Neutrase were least effective in inhibiting the development of TBARS and PV, whereas in an aqueous solution, hydrolysates prepared using Flavourzyme were most effective in scavenging DPPH radicals and chelating ferrous ions. Enzymatic hydrolysis decreased the size of tilapia protein hydrolysates and, in general, tilapia protein hydrolysates with low molecular weights were better antioxidants than those with high molecular weights.

Link to article