The spectral sensitivity of visual pigments in vertebrate eyes is optimized for specific light conditions. One of such pigments, rhodopsin (RH1), mediates dim-light vision. Amino acid replacements at tuning sites may alter spectral sensitivity, providing a mechanism to adapt to ambient light conditions and depth of habitat in fish. Here we present a first investigation of RH1 gene polymorphism among two ecotypes of Atlantic cod in Icelandic waters, which experience divergent light environments throughout the year due to alternative foraging behavior. We identified one synonymous single nucleotide polymorphism (SNP) in the RH1 protein coding region and one in the 3 ′ untranslated region (3′-UTR) that are strongly divergent between these two ecotypes. Moreover, these polymorphisms coincided with the well-known panthophysin (Pan I) polymorphism that differentiates coastal and frontal (migratory) populations of Atlantic cod. While the RH1 SNPs do not provide direct inference for a specific molecular mechanism, their association with this dim-sensitive pigment indicates the involvement of the visual system in local adaptation of Atlantic cod.
Category: Branches
Access to safe food is part of Icelanders' privileges. Rapidly growing antibiotic resistance, which is linked to, among other things, factory farming and the high use of antibiotics in agriculture, is one of the main threats to human public health. Growing trade in food between countries and continents facilitates the spread of germs and antibiotic resistance around the world. Icelandic agriculture and agricultural products have a special position due to the country's isolation and small size.
After extensive measures to reduce the spread Campylobacter and Salmonella in poultry farms, the prevalence of Campylobacter infections is about 17-43 / 100,000 inhabitants, half of them of domestic origin, and Salmonella infections 10-15 / 100,000, most of which are transmitted abroad. Enterohaemorrhagic E. coli (EHEC) has not been found in Icelandic cattle and a low incidence (usually 0-0.6 / 100,000) is therefore not surprising. A recent group infection caused by a multidrug-resistant EHEC strain was attributed to imported contaminated lettuce. The use of antibiotics in Icelandic agriculture is one of the lowest known in Europe and it is rare for domestic infections to be caused by Salmonella and Campylobacter is caused by antibiotic-resistant strains. Carbapenemase-forming Enterobacteriaceae have not yet been found in Iceland.
Low use of antibiotics in Icelandic agriculture combined with austerity measures to reduce spread Campylobacter and Salmonella have been very successful. The general public needs to be aware of the importance of food origins and that Icelandic agricultural products still have a special position in terms of the risk of infection.
Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5–7.5 and 40 ° C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.
The effect of different pre-salting methods (brine injection with salt with / without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets were studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pickle salting had the least heterogeneous salt distribution. Fillets from all treatments contained spots with unsaturated brine, increasing the risk of microbial denaturation of the fillets during storage. Since a homogeneous water and salt distribution was not achieved with the studied pre-salting methods, further optimizations of the salting process, including the pre-salting and dry salting steps, must be made in the future.
Regulations on the exploitation of populations of commercially important fish species and the ensuing consumer interest in sustainable products have increased the need to accurately identify the population of origin of fish and fish products. Although genomics-based tools have proven highly useful, there are relatively few examples in marine fish displaying accurate origin assignment. We synthesize data for 156 single-nucleotide polymorphisms typed in 1039 herring, Clupea harengus L., spanning the Northeast Atlantic to develop a tool that allows assignment of individual herring to their regional origin. We show the method's suitability to address specific biological questions, as well as management applications. We analyze temporally replicated collections from two areas, the Skagerrak (n = 81, 84, 66) and the western Baltic (n = 52, 52). Both areas harbor heavily fished mixed-origin stocks, complicating management issues. We report novel genetic evidence that herring from the Baltic Sea contribute to catches in the North Sea, and find support that western Baltic feeding aggregations mainly constitute herring from the western Baltic with contributions from the Eastern Baltic. Our study describes a general approach and outlines a database allowing individual assignment and traceability of herring across a large part of its East Atlantic distribution.
Cyclodextrin glucanotransferases (CGTases; EC 2.4.1.19) have mainly been characterized for their ability to produce cyclodextrins (CDs) from starch in an intramolecular transglycosylation reaction (cyclization). However, this class of enzymes can also catalyze intermolecular transglycosylation via disproportionation or coupling reactions onto a wide array of acceptors and could therefore be valuable as a tool for glycosylation.In this paper, we report the gene isolation, via the CODEHOP strategy, expression and characterization of a novel CGTase (CspCGT13) from a Carboxydocella sp. This enzyme is the first glycoside hydrolase isolated from the genus, indicating starch degradation via cyclodextrin production in the Carboxydocella strain. The fundamental reactivities of this novel CGTase are characterized and compared with two commercial CGTases, assayed under identical condition, in order to facilitate interpretation of the results. The comparison showed that the enzyme, CspCGT13, displayed high coupling activity using γ-CD as donor, despite preferentially forming α- and β-CD in the cyclization reaction using wheat starch as substrate. Comparison of subsite conservation within previously characterized CGTases showed significant sequence variation in subsites −3 and −7, which may be important for the coupling activity.
The chemical composition of geothermal fluids may be altered upon ascent from the reservoir to surface by processes including boiling, degassing, mixing, oxidation and water – rock interaction. In an attempt to quantify these processes, a three step model was developed that includes: (1) defining the composition of the end-member fluid types present in the system, (2) quantifying mixing between the end-members using non-reactive elemental concentrations and enthalpy and (3) quantifying the changes of reactive elements including degassing, oxidation and water – rock interaction. The model was applied to geothermal water at Vonarskard, Iceland, for demonstration having temperatures of 3–98 ° C, pH of 2.15–9.95 and TDS of 323–2250 ppm, and was thought to be produced from boiled reservoir water, condensed steam and non-thermal water. Most geothermal water represented mixture of non-thermal water and condensed steam whereas the boiled reservoir water was insignificantly mixed. CO2 and H2S degassing was found to be quantitative in steam-heated water, with oxidation of H2S to SO4 also occurred. In contrast, major rock forming elements are enriched in steam-heated water relative to their mixing ratios, suggesting water – rock interaction in the surface zone. Boiled reservoir water observed in alkaline hot springs have, however, undergone less geochemical changes upon ascent to surface and within the surface zone.
This study utilized Life Cycle Assessment (LCA) to quantify the environmental impacts of 1 kg of live-weight Arctic char, cultivated in an Icelandic land-based aquaculture farm. The functional unit included assessments of three different feed types; standard feed with high inclusion levels of marine ingredients (Conv.), experimental feed with high inclusion levels of agricultural ingredients (ECO) and a hypothetical Black soldier fly larvae based feed (BSF). Results of the study indicated that the feed production causes the greatest environmental impacts from all feed types considered. The Black soldier fly based feed demonstrated the best environmental performance of the three feed types. Furthermore, it can be concluded that by increasing agriculture based ingredients at the cost of marine based ingredients, a better environmental performance can be reached. This study demonstrated the importance of feed production for aquaculture in terms of environmental impacts and showed that byoptimizing feed consumption, reducing the amount of fishmeal and fish oil and even creating new types of feed from novel ingredients, the overall impacts of aquaculture can be greatly reduced .
The thermophile Rhodothermus marinus produces extracellular polysaccharides (EPSs) that forms a distinct cellular capsule. Here, the first data on EPS production in strains DSM4252T and MAT493 are reported and compared. Cultures of both strains, supplemented with either glucose, sucrose, lactose or maltose showed that the EPS were produced both in the exponential and stationary growth phase and that production in the exponential phase was boosted by maltose supplementation, while stationary phase production was boosted by lactose . The latter was higher, resulting in 8.8 (DSM4252T) and 13.7 mg EPS / g cell dry weight (MAT493) in cultures in marine broth supplemented with 10 g / L lactose. The EPSs were heteropolymeric with an average molecular weight of 8 × 104 Da and different monosaccharides, including arabinose and xylose. FT-IR spectroscopy revealed presence of hydroxyl, carboxyl, N-acetyl, amine, and sulfate ester groups, showing that R. marinus produces unusual sulfated EPS with high arabinose and xylose content.
Lipid deterioration of mackerel caught in Icelandic waters was studied, as affected by different frozen storage temperatures (−18 ° C vs. −25 ° C) and seasonal variation (August vs. September). The lipid stability was investigated by analyzes of hydroperoxide value (PV), thiobarbituric acid reactive substances (TBARS), free fatty acids, as well as changes in fatty acid composition. Results showed significant lipid deterioration with extended storage time, where the lower storage temperature showed significantly more protective effects. Furthermore, a higher lipid oxidation level was recorded for fish caught in September than in August, although lipid hydrolysis occurred to be greater for fish in August than in September. Moreover, results indicated a rather stable level of omega-3 fatty acid during the entire frozen storage period. The analysis indicated that both lipid oxidation and hydrolysis were affected by the frozen storage temperature and the stability differed with regard to season of catch.