Reports

Production of valuable products from viscera / Production of valuable products from viscera

Published:

01/03/2014

Authors:

Sigrún Mjöll Halldórsdóttir

Supported by:

AVS

Production of valuable products from viscera / Production of valuable products from viscera

Fish stew is rich in many different substances such as protein, fish oil and minerals, which can be good in all kinds of valuable products. The purpose of the project was to investigate the possibility of using material from slag for pet food and / or fertilizer for plants. Cod processing with and without liver was performed with enzymes: on the one hand Alkalase and on the other hand a mixture of Alkalasa and cod enzymes. Attempts were made to collect fat phase from the slag. The fatty phase was analyzed for fatty acids and peroxide values were measured to assess the degree of development. The protein component was then spray dried and the following measurements were performed: protein content, amino acid analysis, trace element measurement, antioxidant activity (metal chelating ability, DPPH, ORAC, reducing ability and antioxidant activity in the cellular system) and antihypertensive activity. The main results are that the enzymatic slag has an excellent ability to bind to metal and can thus maintain metals (minerals) in a form that both plants and animals can use. The amino acid composition was also very suitable as nutrition for dogs and cats.

Fish viscera is rich in many different materials, such as protein, oil and minerals that can be good in all kinds of valuable products. The purpose of this project was to investigate the possibility of utilizing materials of viscera in pet food and / or fertilizer for plants. Viscera from cod processing with and without liver was processed with the following enzymes: Alcalase and a mixture of Alcalase and cod enzymes. Attempts were made to collect the lipid phase of the viscera. Fatty acids were analyzed in the lipid phase and measured peroxide values to assess the degree of rancidity. The remaining protein solution was spray dried and the following measurements performed: protein content, amino acid analysis, measurement of trace elements, antioxidant (metal chelating, DPPH, ORAC, reducing ability and antioxidant activity in cell systems) and blood pressure lowering activity. The main conclusion is that hydrolysed viscera protein has excellent ability to metal chelation and can thereby maintain metals (minerals) in the form that both plants and animals can utilize. Amino acid composition was also very suitable as nutrition for dogs and cats.

View report

Reports

Cartilage saccharides and bioactive compounds from sea cucumbers

Published:

01/06/2012

Authors:

Ólafur Friðjónsson, Varsha Kale, Jón Óskar Jónsson, Sesselja Ómarsdóttir, Hörður Kristinsson, Margrét Geirsdóttir, Patricia Y. Hamaguchi, Guðlaugur Sighvatsson, Sigfús Snorrason, Kári P. Ólafsson, Guðmundur Ó. Hreggviðsson

Supported by:

Tækniþróunarsjóður, AVS

Contact

Ólafur H. Friðjónsson

Research Group Leader

olafur@matis.is

Cartilage saccharides and bioactive compounds from sea cucumbers

In recent years, Matís, in collaboration with the Faculty of Pharmacy at the University of Iceland, IceProtein ehf and Reykofninn ehf, has conducted research on cartilage sugars (chondroitin sulphate) from shark cartilage and sea urchins from Icelandic smelters (Cucumaria frondosa). Studies around the world have shown a wide range of bioactivity of cartilage sugars, in vitro and in vivo, and such sugars are used as a dietary supplement, usually with glucosamine to treat osteoarthritis. Studies have also shown that cutting cartilage sugars into smaller units (oligosaccharides) can potentially increase their bioactivity in vitro. The research of Matís and partners, which was supported by the AVS Fisheries Research Fund and the Technology Development Fund, showed that cartilage sugars can be produced from shark cartilage and coarsely refined cartilage sugars from simple edema. It is also possible to produce oligosaccharides from shark cartilage with specific biocatalysts, which were prepared in the research project. The cartilage sugars show considerable bioactivity in vitro and cartilage sugars from Icelandic sea otters are particularly interesting as they show antioxidant activity, immune-regulating activity and hypoglycemic activity. The molecular structure of cartilage sugar from sea urchins is complex compared to shark cartilage sugars as they contain side chains composed of different types of sugars. The production of refined cartilage sugars from sea edema is therefore a complex process and it is anticipated that such sugars will be expensive on the market. Matís and IceProtein in collaboration with Reykofninn are now preparing further production of coarsely refined cartilage sugars from seaweed in sales and promotional activities.

In recent years, Matís ohf, The Faculty of Pharmaceutical Sciences, University of Iceland, IceProtein and Reykofninn ehf have collaborated in a research project on cartilage saccharides (chondroitin sulfate) isolated from shark and sea cucumbers from waters around Iceland (Cucumaria frondosa). The project results indicate that processing of the chondroitin sulfate from shark cartilage is a simple procedure and production of disaccharides with recombinant biocatalyst, evolved in the project, may be profitable. The chondroitin sulfate shows considerable bioactivity. Fractions of chondroitin sulfate purified from sea cucumbers, are especially interesting as they display immunomodulating activity and anti ‐ diabetic properties. However, the structure of the sea cucumber chondroitin sulfate is complex as they contain side chains composed of fucoside residues. Hence, the production and purification of chondroitin sulfate from Icelandic sea cucumbers will be a complicated procedure. Nevertheless, the results indicate that production of crude chondroitin sulfate from sea cucumber can be viable procedure.

Report closed until 01.07.2015

View report
EN