Reports

Cross-ownership in the Icelandic seafood industry and the potential effects on UK supply: A Matis report for Seafish and the Grimsby Seafood Cluster

Published:

22/11/2023

Authors:

Jónas R. Viðarsson, Gunnar Þórðarson

Supported by:

SEAFISH

Contact

Jónas Rúnar Viðarsson

Director of Business and Development

jonas@matis.is

This report is commissioned by Seafish and the Grimsby seafood cluster in the UK with the aim to get and overall understanding of connections and dependencies in ownership of the largest seafood companies in Iceland, and how these can potentially affect supply to the UK.

Quota consolidation has been a feature of Iceland's fisheries sector since 1991, when the government introduced individual transferable quotas (ITQs) across all species. This allowed some companies to buy up quotas from others, and catch them in a way which, in theory, ought to be more efficient. The concept is that overall economic return from the resource will be maximized by allowing for such optimization. Now, almost three decades later, the economy of scale has resulted in extreme consolidation across the seafood sector, where smaller companies have merged into larger ones or been bought up by the big vertically integrated seafood companies.

The catching and processing sectors have been going through a major development phase in recent years, as vessels and processing technologies have advanced and become much more efficient. This however comes with a price tag that only the larger companies can afford, which in return has escalated consolidation. As an example, in 1991 the ten largest companies owned 24% of the overall quota in cod-equivalent but now have possession of 52% of the quota; and the twenty largest companies own 72%.

In order to maintain diversity in the industry and to avoid ending up with only a handful of companies possessing the entire quota, the government placed a cap (quota ceiling) on how many individual companies are allowed to own the quota. For the main ITQ system this cap is 12% in cod-equivalent and for the coastal fleet (vessels below 15 meters) the quota ceiling is at 5%. However, at present, if a company holds a stake of less than 50% in another firm, that latter firm's quota holdings do not count towards the quota ceiling. As a result, many of the larger companies now have cross-ownership that is not very transparent. Clusters of connected companies have therefore emerged, which are dependent on each other. 

In the spring of 2019, the government formed a committee that was to review and suggest how "connected companies" should be defined with regard to the quota ceiling. The committee returned its suggestions at the end of 2019. The main results were that majority ownership should still be needed to count quotas against the ceiling. Increased transparency is however suggested, obliging companies that possess more than 6% of the quota (2.5% of the coastal fleet quota) to disclose cross-ownership with the Directorate of fisheries. 

This report gives a brief overview of cross-ownership and dependencies between the largest seafood companies in Iceland and concludes how these may affect supply to the UK, particularly in regard to supplies of fresh whole fish. The report also provides information on major investments that have occurred in the last few years that are likely to affect the supply of fresh whole fish to the UK.

View report

Reports

Supply Chain Network analysis and recommendations for improved logistics within the SUPREME project

Published:

18/09/2023

Authors:

Jónas Baldursson, Jónas R. Viðarsson, Magnus Stoud Myhre & Valur N. Gunnlaugsson

Supported by:

The research council of Norway (project no. 970141669)

Contact

Jónas Rúnar Viðarsson

Director of Business and Development

jonas@matis.is

This report provides an overview of the main findings of work package 1 in the SUPREME project, which is funded by the Norwegian Research Council (Forskningsrådet). The primary objective of the project is to increase the resource utilization and value creation from whitefish rest-raw materials from the Norwegian sea-going fleet into valuable ingredients and WP1 focuses on mapping and logistics management. WP1 has previously published a report on supply chain process mapping, and this report follows up on that work by presenting a Supply Chain Network analysis and providing recommendations for improved logistics to increase utilization of rest-raw materials (RRM) from the Norwegian sea going fleet .

The total utilization of whitefish is fairly good compared to most other countries, but it is still possible to improve. The report provides an overview of where, when and in what format whitefish is landed in Norway, and the extent of current RRM utilization. The whitefish landings are mostly concentrated over just a three-month period (February – April) and the overwhelming majority of the catches are landed in just a handful of municipalities. It is therefore evident that in order to increase utilization the focus should be on improvements where most of the raw material is available. Major part of the catches of the sea-going fleet is landed frozen, headed and gutted; and then exported in the same format. Many of the heads and viscera are not landed in these cases, and other raw materials do not become available in Norway. It is difficult for the sea-going fleet to make changes on their supply chain, as for example onboard technology, human resources and storage space limits the possibilities to preserve and land heads and viscera. In addition, the logistics are also very challenging in Norway.

Among the solutions suggested in this report is for the authorities to provide additional incentives for landing RRMs, particularly in the municipalities with significant whitefish landings. This could for example be in the form of adding to the infrastructure in the harbors, or by facilitating that a collector vessel would transship RRMs to land. Probably the most practical and applicable solution identified in the report is however a rather "low-hanging fruit" that concerns improving information sharing between the different links in the supply chain. Sharing information between the fishing vessels and the processing companies would have mutual benefits in increasing revenue and increasing utilization. 

View report

Reports

Summary report of a digestibility trial with Atlantic salmon in seawater

Published:

12/09/2023

Authors:

Wolfgang Koppe, Sven-Ole Meiske, Georges Lamborelle and David Sutter

Supported by:

TripleNine A/S

Contact

Georges Lamborelle

Station manager of Matís Aquaculture Research Station

georges@matis.is

This report is closed.

View report

Reports

Effect of different raw materials on diet attractiveness for the whiteleg shrimp

Published:

31/08/2023

Authors:

Simon Herrig, David Sutter, Wolfgang Koppe, Sven-Ole Meiske & Georges Lamborelle

Supported by:

Calanus A/S

Contact

Georges Lamborelle

Station manager of Matís Aquaculture Research Station

georges@matis.is

This report is closed.

Reports

Whiteleg shrimp (Penaeus vannamei) growth trial in saltwater

Published:

29/08/2023

Authors:

David Sutter, Wolfgang Koppe, Sven-Ole Meiske & Georges Lamborelle

Supported by:

Berg & Schmidt GmbH & Co. KG

Contact

Georges Lamborelle

Station manager of Matís Aquaculture Research Station

georges@matis.is

This report is closed.

Peer-reviewed articles

Thermal-Induced Autolysis Enzymes Inactivation, Protein Degradation and Physical Properties of Sea Cucumber, Cucumaria frondosa

Contact

Margrét Geirsdóttir

Project Manager

mg@matis.is

The main objective is to effectively denature the autolysis enzymes C. frondosa on the premise of avoiding the quality deterioration caused by overheating. The effects of the different thermal treatments (blanching at 40–80 °C for 45 min, boiling and steaming at 100 °C for 15–120 min) on the cooking yield, moisture content, protein degradation, texture, and enzyme inactivation were studied , and the inner relationship was investigated by multivariate analysis. The autolysis enzymes too C. frondosa were thermally stable and cannot be denatured completely by blanching. Boiling and steaming could efficiently inactivate the enzymes, but overheating for 60–120 min reduced the cooking yield and texture quality. Boiling at 100 °C for 45 min was suitable for pre-treatment, with cooking yield of 70.3% and protein content of 78.5%. Steaming at 100 °C for at least 30 min was preferable for long-term storage and instant food, in which the relative activity was only 3.2% with better palatability.

Peer-reviewed articles

Comparative monosaccharide profiling for taxon differentiation: An example of Icelandic edible seaweeds

Contact

Guðjón Þorkelsson

Strategic Scientist

gudjon.thorkelsson@matis.is

Edible seaweeds are usually sold as flakes or even powers, and morphological identification of seaweed taxa is difficult. Water-soluble polysaccharides (WSPs) in edible seaweeds are not only interesting functional food ingredients (eg gel-forming property, health benefits), but also useful for seaweed taxon differentiation. The current study aims to explore the utility of monosaccharide profiling of WSPs in seaweed differentiation. We developed a high-performance liquid chromatography-photodiode array detection for monosaccharide determination, and characterized monosaccharide profiles of WSPs from five edible seaweeds sold in Iceland (ie kombu Iceland – Laminaria hyperborea, sugar kelp – Saccharina latissima, dulse – Palmaria palmata and two types of nori labeled as Porphyria sp. and Pyropia sp.). Monosaccharide profiling data reflected both the complexity and quantitative differences of WSPs. The seaweed dulse showed the highest concentrations of total sugar (ca. 16 mM), followed by kombu (ca. 12 mM). From monosaccharide profiling too red algae, it was found that galactose (ca. 81–87% of total sugars) and xylose (ca. 65–77% of total sugars) are the dominant sugars in nori and dulse, respectively, which reflected the presence of galactan and xylan. In brown algae (ie kombu and sugar kelp), glucose (ca. 64–83%) and fucose (13–20%) are the main sugars, and they represent of the laminar and fucoidans. The principal component analysis of sugar profiles showed the useful patterns for seaweed taxon differentiation. The dendrogramresulting from hierarchical cluster analysis is congruent with phylogenetic tree, implying the chemotaxonomic value of seaweed monosaccharide profiles. This tool will be more useful in authentication of seaweed taxa when morphological and genetic identifications are not available.

Peer-reviewed articles

Environmental Impacts of Large-Scale Spirulina (Arthrospira platensis) Production in Hellisheidi Geothermal Park Iceland: Life Cycle Assessment

Contact

Margrét Geirsdóttir

Project Manager

mg@matis.is

Spirulina algae (Spirulina platensis) cultivated in geothermally powered photobioreactors is here proposed as a potentially resource efficient, zero-carbon, and nutritious alternative to conventional beef meat. Employing a standard life cycle assessment, environmental impacts of large-scale Spirulina production in this facility are calculated. The production facility is sited in Orka nátturnnar (ON Power) Geothermal Park, Iceland, and benefits from resource streams accessible through Hellisheidi (Hellisheidi) power station, including renewable electricity for illumination and power usage, hot and cold water streams for thermal management, freshwater for cultivation, and CO2 for biofixation. During cultivation, GHG-intensive ammonia-based fertilizers are replaced with macronutrients sourced from natural open mines. LCA results show that production of 1 kg of wet edible biomass in this facility requires 0.0378 m2 non-arable land, 8.36 m3 fresh water and is carbon neutral with − 0.008 CO2-eq GHG emissions (net zero). Compared with conventionally produced meat from beef cattle, Spirulina algae cultured in the ON Power Geothermal Park, referred to in this study as GeoSpirulina, requires less than 1% land and water and emits less than 1% GHGs. Considering food and nutritional security concerns, cultivation in a controlled environment agriculture system ensures a consistent nutritional profile year-round. Moreover, GeoSpirulina biomass assessed in this study contains all essential amino acids as well as essential vitamins and minerals. While keeping a balanced nutrition, for every kg beef meat replaced with one kg GeoSpirulina, the average consumer can save ~ 100 kg CO2-eq GHGs. It is concluded that the environmental impacts of GeoSpirulina production in the Hellisheidi facility are considerably lower than those of conventionally produced ruminants.

Peer-reviewed articles

A Comparison of Fresh and Frozen Lamb Meat-Differences in Technological Meat Quality and Sensory Attributes

Contact

Guðjón Þorkelsson

Strategic Scientist

gudjon.thorkelsson@matis.is

Technological meat quality and sensory attributes of fresh and frozen lamb meat were compared. Samples were collected from two abattoirs (one small-scale, one large-scale) that use different slaughter methods in terms of chilling regime and electrical stimulation. The fresh and frozen meat samples included products from both slaughter systems. Ten twin pairs of ram lambs were used in the study, with one of each twin slaughtered at each abattoir. Fresh meat was analyzed after chilling and frozen meat was stored frozen for three months and analyzed after thawing. The Musculus longissimus thoracis et lumborum was analyzed for colour, cooking loss, sensory attributes, Warner-Bratzler shear force (WBSF) and distribution of water and lipid within each meat sample. Meat samples analyzed after frozen storage were darker, less red and more yellow than the fresh meat. Freezing and frozen storage increased fluid loss and WBSF compared with the fresh meat, due to protein denaturation. Frozen storage affected sensory attributes by increasing fatty odor, frying flavor, sour flavor, fatty flavor and liver flavor, and by reducing juicy texture and mushy texture.

Peer-reviewed articles

Microbial Metabolism of Amino Acids – Biologically Induced Removal of Glycine and the Resulting Fingerprint as a Potential Biosignature

Contact

Viggó Marteinsson

Research Group Leader

viggo@matis.is

The identification of reliable biomarkers, such as amino acids, is key for the search of extraterrestrial life. A large number of microorganisms metabolize, synthesize, take up and excrete amino acids as part of the amino acid metabolism during aerobic and/or anaerobic respiration or in fermentation. In this work, we investigated whether the anaerobic microbial metabolism of amino acids could leave a secondary biosignature indicating biological activity in the environment around the cells. The observed fingerprints would reflect the physiological capabilities of the specific microbial community under investigation. The metabolic processing of an amino acid mixture by two distinct anaerobic microbial communities collected from Islinger Mühlbach (ISM) and Sippenauer Moor (SM), Germany was examined. The amino acid mixture contains L-alanine, β-alanine, L-aspartic acid, DL-proline, L-leucine, L-valine, glycine, L-phenylalanine and L-isoleucine. In parallel, an amino acid spiked medium without microorganisms was used as a control to determine abiotic changes over time. Liquid chromatography mass spectrometry (LC-MS) was used to track amino acid changes over time. When comparing to the control samples that did not show significant changes of amino acids concentrations over time, we found that glycine was almost completely depleted from both microbial samples to less than 3% after the first two weeks- These results indicate a preferential use of this simple amino acid by these microbial communities. Although glycine degradation can be caused by abiotic processes, these results show that its preferential depletion in an environment would be consistent with the presence of life. We found changes in most other amino acids that varied between amino acids and communities, suggesting complex dynamics with no clear universal pattern that might be used as a signature of life. However, marked increases in amino acids, caused by cellular synthesis and release into the extracellular environment (eg, alanine), were observed and could be considered a signature of metabolic activity. We conclude, that substantial anomalous enhancements of some amino acids against the expected abiotic background concentration may be an agnostic signature of the presence of biological processes.

EN