Reports

Rapid methods for quality evaluation: Evaluation of salted cod following desalting, freezing and storage

Published:

21/03/2024

Authors:

Hildur Inga Sveinsdóttir, María Guðjónsdóttir, Sigurjón Arason, Cecile Dargentolle and Kolbrún Sveinsdóttir

Supported by:

AVS Research Fund and Food Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

This report is closed. 

View report

Reports

Impact of water origin and composition on the desalination of fully salt-cured cod

Published:

21/03/2024

Authors:

Cecile Dargentolle, Maxime Dupont, Hildur Inga Sveinsdóttir, Sigurjón Arason and Kolbrún Sveinsdóttir

Supported by:

AVS Research Fund and Food Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

This report is closed. 

View report

Reports

The effect of different desalting methods on the quality of injected brine and pickle salted frozen cod (Gadus morhua)

Published:

21/03/2024

Authors:

Cecile Dargentolle, Hildur Inga Sveinsdóttir, Sigurjón Arason and Kolbrún Sveinsdóttir

Supported by:

AVS Research Fund and Food Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

This report is closed. 

View report

Reports

Shelf life of differently treated thawed desalted cod loins and tails after storage at -25°C up to 27 months

Published:

21/03/2024

Authors:

Cecile Dargentolle, Hildur Inga Sveinsdóttir, Jónas Baldursson, Sigurjón Arason and Kolbrún Sveinsdóttir

Supported by:

AVS Research Fund and Food Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

This report is closed. 

View report

Reports

Shelf life of frozen desalted cod (Gadus morhua)

Published:

21/03/2024

Authors:

Cecile Dargentolle, Hildur Inga Sveinsdóttir, Jónas Baldursson, Sigurjón Arason and Kolbrún Sveinsdóttir

Supported by:

AVS Research Fund and Food Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

This report is closed. 

View report

Reports

Desalting experiments

Published:

21/03/2024

Authors:

Cecile Dargentolle, Hildur Inga Sveinsdóttir, Sigurjón Arason and Kolbrún Sveinsdóttir

Supported by:

AVS Research Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

This report is closed. 

View report

Reports

Quality optimization of frozen redfish products

Published:

21/02/2020

Authors:

Ásbjörn Jónsson, Cecile Dargentolle, Huong Thi Thu Dang, Magnea Karlsdóttir, María Guðjónsdóttir, Sigurjón Arason

Supported by:

AVS R&D Fund (R 029-15)

Contact

Sigurjón Arason

Chief Engineer

sigurjon.arason@matis.is

Maximizing the quality of frozen redfish products / Quality optimization of frozen redfish products

The aim of the study was twofold. Firstly, to explore the influence of time and temperature during frozen storage on lipid deterioration of red fish. That was done by comparing the effect of temperature fluctuation and abuse during frozen storage, as can be expected during transportation, on the physicochemical characteristics and lipid stability of redfish fillets. Secondly, to investigate the effect of 4 days postcatch and 9 days postcatch, and seasonal variation on the quality and storage stability of frozen red fish.

Storage temperature and storage time affected the physical- and chemical properties in redfish, eg free fatty acids, TBARS and TVB-N. Season of capture affected both the nutritional value and stability of golden redfish. The light muscle of fish caught in November was richer in EPA and DHA than in the fish caught in June. The fish caught in November was also more unstable through frozen storage, due to a more unsaturated nature of the fatty acids present, indicating that special care needs to be applied during handling and treatment of golden redfish caught at this time. The light muscle had a higher nutritional value than the dark muscle and is a good nutritional source for human consumption. However, the dark muscle was prone to lipid oxidation which may have a negative influence on the more valuable light muscle. So there seems to be a need to separate them.

View report

Reports

The effects of food container depth and coverage on the quality of superchilled rainbow trout

Published:

01/09/2018

Authors:

Magnea Karlsdóttir, Erwan Queguiner, Björn Margeirsson, Sigurjón Arason, Aðalheiður Ólafsdóttir

Supported by:

AVS R&D Fund (R 17 016-17), Technology Development Fund (164698-1061)

Contact

Sigurjón Arason

Chief Engineer

sigurjon.arason@matis.is

The effects of food container depth and coverage on the quality of superchilled rainbow trout

Fresh farmed fish is generally gutted and packed in a foam plastic box with ice for export in refrigerated containers. In view of the great development that has taken place in terms of supercooling and its positive effect on the quality of fish products, other more cost-effective and environmentally friendly packaging solutions have been examined, including insulated food containers. The main objective of the project was to evaluate the impact of different packaging methods on the quality of fresh rainbow trout. Gutted fish with a head was packed in a foam plastic box and insulated pots of different depths (29-60 cm). In addition to comparing different depths of pots, different embodiments of closing pots were also examined. Experimental fish were observed at the top and bottom of each tank. The pots were stored in a temperature-controlled environment at about -1 ° C and measurements were made after 8 and 13 days after packing. The fish packed in a foam box was either supercooled before packing or cooled in the traditional way with ice. This was done to assess the effect of supercooling on fresh rainbow trout. To assess the quality of the rainbow trout, microbial growth, texture and release in fillets were monitored. The results showed that the packaging solutions examined in the project had a relatively small effect on the total number of microorganisms, but there was no significant difference between experimental groups at the end of the storage period. In general, there was little to no difference between groups in texture and texture in fillets. On the other hand, the results showed that it is necessary to close the pots, but the type did not have a significant effect. Supercooling before packing had a significant effect on release. Fish that was cooled in the traditional way and packed in a foam plastic box with ice had significantly more release compared to when it was super-cooled and packed in a pot or foam plastic box without ice. The results show that there is no significant difference between foam boxes and pots of different depths compared to the quality variables examined in this project. They indicate that the transport of supercooled rainbow trout in pots is a viable option in terms of the stability of the raw material and the quality of the product.

The overall aim of the study was to explore the effects of different packaging solutions on the quality of fresh rainbow trout. Different packaging methods included expanded polystyrene boxes (EPS), insulated food containers of 29 to 60 cm depth with various combination of covers. Each container was split up into two groups, top- and bottom layer. Both fish chilled on ice and superchilled fish were considered. Microbial growth and sensory characteristics (fillet gaping, softness and elasticity) were used to evaluate the quality of the rainbow trout fillets after 8 and 13 days of storage at around -1 ° C. The different packaging solutions had no effects on the microbial quality of the fish. Moreover, no listeria activity was detected. Sensory evaluation showed minor differences between containers of different depths and / or EPS boxes, as well as between top and bottom layers. However, the presence of cover proved to be of great importance, but the type of cover turned out to be not relevant. The effects of superchilling before packaging on fillet gaping was evident in present study since fish packed in EPS box with ice resulted in more gaping than superchilled fish packed in EPS boxes and / or containers without ice.

View report

Reports

The effects of insulated tub depth on the quality of iced Atlantic cod / Effect of insulated tub depth on the quality of frozen cod

Published:

01/04/2018

Authors:

Rúnar Ingi Tryggvason, Magnea Karlsdóttir, Björn Margeirsson, Sigurjón Arason, Aðalheiður Ólafsdóttir

Supported by:

AVS R&D Fund (R 17 016-17), Technology Development Fund (164698-1061)

Contact

Sigurjón Arason

Chief Engineer

sigurjon.arason@matis.is

The effects of insulated tub depth on the quality of iced Atlantic cod / Effect of insulated tub depth on the quality of frozen cod

The aim of the project was to investigate the quality of cod that had been gutted one day after fishing, frozen and packed in 12 different sized tanks, 4 × 250 L, 4 × 460 L and 4 × 660 L. Experimental fish were monitored at the top and bottom of each tank . The pots were stored in a temperature controlled environment at 1 ° C and measurements were made after 6, 10, 13 and 15 days after packing. To assess the quality of the cod, water loss was used in tanks after storage, processing utilization and sensory evaluation. The results showed that water loss was highest in 660 L pots and lowest in 250 L pots. There was no difference in processing efficiency. In all cases, there was less looseness in the bottom of the pot compared to the top, probably due to the different size of fish in the top and bottom. There was no difference in the results of the quality factor (QIM) evaluation between pots, but the existing sensory evaluation scales do not include the properties on which a clear difference was seen. There was a big difference between fish in the top layer and fish in the bottom layer in all cases, but ice vessels and marine fillets were more bulky on bottom fish. As a follow-up to the experiment, a new sensory evaluation scale will be designed in ongoing research on the quality of frozen and supercooled fish in different large tanks, which will address these factors, ie. let's go for ice cream and bruises in fillets.

The aim of this project was to examine the quality difference of Atlantic cod that had been iced and packed into 12 different sized food containers (tubs), 4 × 250 L, 4 × 460 L and 4 × 660 L. Each tub was split up into two groups, top-and bottom layer. Drip loss, processing yield, and sensory evaluation were used to evaluate the quality of the cod. The results showed that the greatest drip loss was in the 660 L tub, and the least in the 250 L tub. There was no difference in processing yield. Sensory evaluation showed no difference between tubs, except that the fillets from fish in the bottom layer of all containers had less gaping than fillets from the top layer of fish, most likely due to size differences of top-and bottom layer fish. No current sensory evaluation scales account for different amounts of ice marks and crushed fillets that was detected between fish in the top-and bottom layer of the tubs. The results of this project will be used in continuing research of iced and superchilled fish in different sized containers to develop a new sensory scale that will account for these qualities.

View report

Reports

Overview of available methods for thawing seafood / Solutions available for thawing seafood

Published:

01/06/2017

Authors:

Sigurður Örn Ragnarsson, Jónas R. Viðarsson

Supported by:

The Norwegian Research Council (Project number 233709 / E50)

Overview of available methods for thawing seafood / Solutions available for thawing seafood

There is a constant demand for quality raw materials that can be used for producing seafood products for high paying markets in Europe and elsewhere in the world. Suppliers of demersal fish species in the North Atlantic are now meeting this demand by freezing the mainstay of their catches, in order to be able to have available supplies all year around. This is partly done because of seasonal fluctuations in catches, which are harmful from a marking point of view. The fact that all these raw materials are now frozen demands that methods used for freezing and thawing can guarantee that quality of the raw material is maintained. There are a number of methods available to thaw fish. The most common ones involve delivering heat to the product through the surface, as with conduction or convection. These methods include water and air-based systems. More novel methods are constantly on the rise, all with the aim of making the process of thawing quicker and capable of delivering better products to the consumer. These procedures are however, often costly and involve specialized workforce to control the process. All in all, it depends greatly on what kind of conditions a company is operating under regarding which thawing methods should be chosen. This report identifies the most common methods available and provides information on their main pros and cons.

There is a constant demand from fish processing plants around the world for good raw materials from the North Atlantic for the production of products for demanding markets. To meet this demand and in view of the large seasonal fluctuations in catches of certain fish species, companies have decided to freeze the raw material for later use. This requires good methods for freezing the raw material, but it is no less important that the thawing of the raw material is good. There are many methods for thawing fish and other seafood. It has been most common to use heat transfer through surfaces with heat transfer or thermal conductivity. These methods are mostly based on the use of water or air as a medium for thawing. Newer methods exist that try to make the process faster and thus deliver a better product to consumers. However, these methods are often costly and involve a great deal of staff specialization. After all, it matters what kind of business it is and how the companies' situation is at any given time when thawing methods and technical solutions are chosen. This report identifies all the major thawing methods and the technical solutions available on the market today, as well as outlining their main advantages and disadvantages.

View report
EN