Reports

Proceedings from a conference on "Environmental impacts and energy transition in the Nordic seafood sector"

Published:

14/12/2023

Authors:

Jónas R. Viðarsson

Supported by:

AG-fisk (Nordic council of Ministers Working group for Fisheries and Aquaculture)

Contact

Jónas Rúnar Viðarsson

Director of Business and Development

jonas@matis.is

Fish and other seafood play an important role in ensuring food security, employment and the economy in the world, and especially in the Nordic countries. In addition, seafood of Nordic origin generally comes from sustainably exploited stocks, is particularly healthy for consumption and in most cases has a very limited carbon footprint compared to other protein sources. It can therefore be argued to a certain extent that Nordic seafood is a "sustainable superfood". However, consumers are often not sure if seafood is an environmentally friendly option. The Nordic fishing industry is now faced with the opportunity to take the lead in the energy exchange, and thus be able to boast of offering the best and most environmentally friendly seafood available.

The Working Group on Fisheries and Aquaculture (AG-Fisk) operating within the Nordic Council has identified these opportunities, and as part of Iceland's presidency of the Council in 2023, AG-fisk funded a project designed to promote networking within the Nordic fisheries to increase awareness and share knowledge about past, present and future progress in terms of sustainability and energy transition in the fisheries sector. The highlight of the project was a conference held in Reykjavík on September 13, 2023, but the day before a working meeting was held where opportunities for increased Nordic cooperation were discussed. The conference consisted of 13 talks and about 150 people attended the event, which took place in Harpa. This report contains an overview of the presentations made at the conference. Recordings from the conference are also available at website of the project.
_____

Seafood is generally a climate-efficient and nutritious type of food. Consumers, however, are often confused as to whether seafood is sustainable or not and what seafood to choose. The Nordic seafood sector now has the opportunity to take the lead in transitioning to low greenhouse gas emissions through energy efficiency measures and shifting to alternative fuels.

The Working Group for Fisheries and Aquaculture (AG-Fisk) within the Nordic council has recognized this, and as part of Iceland's presidency of the council in 2023, initiated a networking project to raise awareness and share knowledge on past-, present- and future advances in reduction of environmental impacts in Nordic seafood value chains. The highlight of the project was a conference that was held in Reykjavík on 13 September 2023. The conference consisted of 13 presentations and was attended by close to 150 persons. This report contains the proceedings from the conference, representing an abstract of each presentation and the slides presented. Recordings form the conference are also available on the project's webpage.

View report

Reports

Life Cycle Assessment on fresh Icelandic cod loins

Published:

01/09/2014

Authors:

Birgir Örn Smárason, Jónas R. Viðarsson, Gunnar Þórðarson, Lilja Magnúsdóttir

Supported by:

AVS (R13 042‐13)

Contact

Birgir Örn Smárason

Research Group Leader

birgir@matis.is

Life Cycle Assessment on fresh Icelandic cod loins

With growing human population and increased fish consumption, the world's fisheries are not only facing the challenge of harvesting fish stocks in a sustainable manner, but also to limit the environmental impacts along the entire value chain. The fishing industry, like all other industries, contributes to global warming and other environmental impacts with consequent marine ecosystem deterioration. Environmentally responsible producers, distributors, retailers and consumers recognize this and are actively engaged in mapping the environmental impacts of their products and constantly looking for ways to limit the effects. In this project a group of Icelandic researchers and suppliers of fresh Icelandic cod loins carried out Life Cycle Assessment (LCA) within selected value chains. The results were compared with similar research on competing products and potentials for improvements identified. The project included LCA of fresh cod loins sold in the UK and Switzerland from three bottom trawlers and four long‐ liners. The results show that fishing gear has considerable impact on carbon footprint values with numbers ranging from 0.3 to 1.1 kg CO2eq / kg product. The catching phase impacts is however dominated by the transport phase, where transport by air contributes to over 60% of the total CO2 emissions within the chain. Interestingly, transport by sea to the UK emits even less CO2 than domestic transport. Minimizing the carbon footprint, and environmental impacts in general, associated with the provision of seafood can make a potentially important contribution to climate change control. Favoring low impact fishing gear and transportation can lead to reduction in CO2 emissions, but that is not always practical or even applicable due to the limited availability of sea freight alternatives, time constrains, quality issues and other factors. When comparing the results with other similar results for competing products it is evident that fresh Icelandic cod loins have moderate CO2 emissions.

Along with high population growth and increased fish consumption, the global fisheries sector now faces the important task of utilizing fish stocks sustainably at the same time as they need to minimize all the environmental impact of fishing, processing, transport and other links in the value chain. The fishing industry, like any other industry, contributes to global warming and also has a number of other environmental impacts that have a detrimental effect on the marine environment. Companies that want to show social and environmental responsibility in their operations are fully aware of this and therefore seek to better monitor the environmental impact of their production and look for ways to reduce it. With this in mind, a group of Icelandic researchers, fisheries companies and sales and distributors joined forces to carry out an LCA analysis of selected value chains of fresh cod necks. The results were then compared with the results of comparable studies that have been conducted on competitive products, as well as ways to reduce the environmental impact within the aforementioned value chains were examined. The study included fresh Icelandic cod necks sold in the UK and Switzerland. The saddles were made from the catch of three trawlers and four longliners. The results show that the type of fishing gear has a great influence on the footprint / carbon footprint of the products, as the longliners came out considerably better than the trawlers. The footprint of individual vessels in the study ranged from 0.3 to 1.1 kg CO2eq / kg product, which must be considered quite low compared to previous studies. When it comes to looking at the entire value chain, however, it is the transport component or mode of transport that is by far the most important, i.e. that part is responsible for over 60% of the footprint when the product is exported by air. If, on the other hand, it is exported by ship, the footprint of the transport part will be very small and then domestic transport will become more important than the transport across the sea. Minimizing the environmental impact of fishing, processing and distributing marine products can make a significant contribution to the fight against global warming. By choosing fishing methods and modes of transport with regard to the footprint, it is possible to significantly reduce carbon emissions, but it must also be borne in mind that it is not always possible or realistic to choose only the options with the lowest footprint. The results of this study and a comparison with the results of comparable studies show that fresh Icelandic cod fillets that have been marketed in the UK and Switzerland have a modest footprint and are fully competitive with other fish products or animal proteins.

View report
EN