Seaweed supplementation to mitigate methane (CH4) emissions by cattle




Dr. Ásta H. Pétursdóttir (Matís), Dr. Helga Gunnlaugsdóttir (Matís), Natasa Desnica (Matís), Aðalheiður Ólafsdóttir (Matís), Susanne Kuenzel (University of Hohenheim), Dr. Markus Rodehutscord (University of Hohenheim), Dr. Chris Reynolds (University of Reading), Dr. David Humphries (University of Reading), James Draper (ABP).

Supported by:

EIT Food


Ásta Heiðrún E. Pétursdóttir

Project Manager

SeaCH4NGE results include a detailed analysis of the chemical composition of seaweed, including heavy metals and nutritional composition. Iodine concentration proved to be the main limiting factor regarding seaweed as a feed supplement. The decrease in methane observed in laboratory methane production experiments (in vitro) is likely due to compounds called fluorotannin rather than bromoform, a known substance that can reduce methane production in ruminants. In vitro screening of the seaweed showed a moderate decrease in methane, but lower methane production was dependent on seaweed species. The reduction was dose-dependent, ie by using more algae, a greater methane reduction could be seen in vitro. The same two types of seaweed were used in the Rusitec experiment (in vitro), which is a very comprehensive analysis that provides further information. An in-vivo study in cows showed that feeding cattle with a mixture of brown algae has a relatively small effect on methane emissions. However, fluorotannins are known to have other beneficial effects when consumed by ruminants. The report also includes a survey of British cow farmers' attitudes towards algae feeding and climate change.

Skýrslan er lokuð / This report is closed

View report