Reports

Results of continuous monitoring of unwanted substances in seafood from the resource 2023 

Published:

21/02/2024

Authors:

Sophie Jensen, Julija Igorsdóttir, Natasa Desnica

Supported by:

Ministry of Food

Contact

Sophie Jensen

Project Manager

sophie.jensen@matis.is

This report summarizes the results of the monitoring of undesirable substances in the edible part of seafood in 2023. The monitoring began in 2003 with the assistance of the then Ministry of Maritime Affairs, now the Food Ministry, and saw Matís ohf. on collecting data and issuing reports for this systematic monitoring in the period 2003-2012. Due to the lack of funding for this monitoring project, this important data collection as well as the publication of the results was paused in the period 2013-2016. The project started again in March 2017, but due to a lack of funds, it now only covers the monitoring of undesirable substances in the edible part of seafood from the resource intended for human consumption, and not fishmeal and fish oil for feed. For the same reason, chemical analyzes of PAH and PBDE substances are no longer carried out. In 2023, measurements of PFAS substances were added.

The aim of the project is to demonstrate the status of Icelandic seafood in terms of safety and wholesomeness, and that the data can be used in the preparation of food risk assessments to ensure the interests of consumers and public health. The project builds a knowledge base on the amount of unwanted substances in economically important species and marine products, it is defined as a long-term project where expansion and revision are constantly necessary.

In general, the results obtained in 2023 were consistent with previous results from 2003 to 2012 as well as 2017 to 2022. The results showed that Icelandic seafood contains insignificant amounts of persistent organic substances such as dioxins, PCBs and pesticides. in this report, the European Union (EU) maximum levels for dioxins, dioxin-like PCBs (DL-PCBs) and non-dioxin-like PCBs (NDL-PCBs) in food according to Regulation no. 2023/915 used to assess how Icelandic seafood meets EU requirements. The results of the year 2023 show that all samples of marine products for human consumption were below the EU maximum values for persistent organic substances and heavy metals. The concentration of so-called ICES6-PCB substances was found to be low in the edible part of seafood, compared to the EU maximum value according to regulation no. 2023/915. Likewise, the results showed that the concentration of heavy metals, eg cadmium (Cd), lead (Pb) and mercury (Hg) in Icelandic seafood was always below the EU maximum values. The concentration of PFAS was below the EU maximum value, for all samples except cod roe.

View report

Reports

Seaweed supplementation to mitigate methane (CH4) emissions by cattle

Published:

27/09/2021

Authors:

Dr. Ásta H. Pétursdóttir (Matís), Dr. Helga Gunnlaugsdóttir (Matís), Natasa Desnica (Matís), Aðalheiður Ólafsdóttir (Matís), Susanne Kuenzel (University of Hohenheim), Dr. Markus Rodehutscord (University of Hohenheim), Dr. Chris Reynolds (University of Reading), Dr. David Humphries (University of Reading), James Draper (ABP).

Supported by:

EIT Food

Contact

Ásta Heiðrún E. Pétursdóttir

Project Manager

asta.h.petursdottir@matis.is

SeaCH4NGE results include a detailed analysis of the chemical composition of seaweed, including heavy metals and nutritional composition. Iodine concentration proved to be the main limiting factor regarding seaweed as a feed supplement. The decrease in methane observed in laboratory methane production experiments (in vitro) is likely due to compounds called fluorotannin rather than bromoform, a known substance that can reduce methane production in ruminants. In vitro screening of the seaweed showed a moderate decrease in methane, but lower methane production was dependent on seaweed species. The reduction was dose-dependent, ie by using more algae, a greater methane reduction could be seen in vitro. The same two types of seaweed were used in the Rusitec experiment (in vitro), which is a very comprehensive analysis that provides further information. An in-vivo study in cows showed that feeding cattle with a mixture of brown algae has a relatively small effect on methane emissions. However, fluorotannins are known to have other beneficial effects when consumed by ruminants. The report also includes a survey of British cow farmers' attitudes towards algae feeding and climate change.

Skýrslan er lokuð / This report is closed

View report
EN