Reports

Comparison of wild and farmed cod muscle characteristics

Published:

01/12/2008

Authors:

Valur Norðri Gunnlaugsson, Guðrún Anna Finnbogadóttir, María Guðjónsdóttir, Kolbrún Sveinsdóttir, Hannes Magnússon, Kristján Jóakimsson, Kristín Anna Þórarinsdóttir, Sigurjón Arason

Supported by:

AVS R26-06 / AVS R&D Fund of Ministry of Fisheries in Iceland

Contact

Valur Norðri Gunnlaugsson

Research Group Leader

valur.n.gunnlaugsson@matis.is

Comparison of wild and farmed cod muscle characteristics

The aim of the project was to make a comparison of the properties of cod products made from wild cod before and after dead-freezing and farmed cod before dead-freezing. Also experiment with storage in sludge, ice spray on brine and supercooling (-2.4 ° C) on farmed fish to investigate how the properties of the flesh change with different treatment. Mortality stiffness had a significant effect on weight gain and salt uptake during injection and storage. The uptake of pre-rigor samples was rather low while the uptake of post-rigor wild cod was significant. The pre-rigor fish had less than 5% uptake after pickling, while the wild post-rigor had almost 9% uptake. A similar pattern was seen after injection, where the longest uptake was obtained in wild post-rigor fish or 16.5%. The salinity of most samples ranged from 0.3-0.4%. No significant difference was observed between unsalted samples. In the saline-salted groups, there was only salt uptake in wild cod that was injected after death. On the other hand, salt intake in fish injected before death was insignificant and applied to both wild and farmed cod. The water content was higher in wild cod compared to farmed cod and also spray salting led to a higher water content. Measurements from NMR measurements indicated that there was a difference in the mobility of water molecules and the possible location of water, but this can affect the water - holding properties of the muscle. The fish fillets generally performed well in traditional quality assessments, whether they were injected fillets or untreated fillets. Discharges did not increase as much during the storage period as expected, although considerable discharges were made into the pre- and wild post on the thirteenth day of storage. In previous experiments, the color of farmed fish products has been very white, despite the fact that they have become unusable. On the other hand, yellow cod products turn yellow with shelf life. The results of this experiment did not confirm this difference between farmed cod and wild cod.

There was a great difference in the sensory properties of farmed cod and wild cod after boiling, primarily in texture where wild groups were much thicker, more mushy and softer. Breeding groups had a meaty mouth effect, were more gummy and stuttering, in addition to having a sweeter taste and a much more meaty taste and smell. Storage temperature generally had the effect of producing earlier symptoms of damage in products stored at + 1 ° C compared to -2.4 ° C. The shelf life of farmed cod stored at -2.4 ° C was at least 5 days longer than that of a comparable group stored at + 1 ° C. The effect of storage temperature was also observed in the number of microorganisms, which together with the injection salting led to a larger number of microorganisms. However, there was little difference in products in terms of whether processing took place before or after death solidification. The research was part of the project "Processing and quality control of farmed cod, more specifically a summary for work components 2 and 4.

Production of farmed cod is increasing rapidly, but quality appraisals show that farmed cod has different characteristic from wild cod. These different characteristics make traditional production methods not suitable for farmed cod and therefore it is necessary to analyze those characteristics and adjust production methods especially for farmed cod. Matis ohf has been involved in farmed cod research from its foundation and the company built its foundation on the work which was done by its predecessors. The aim of this project was to look at these different characteristics between farmed and wild cod, pre and post rigor. The aim was also to do experiments with injection of brine and superchilling (-2.4 ° C) and detect the impact of different methods. NMR was used to analyze difference in longitudinal relaxation time (T1), between the samples, farmed cod had lower values for T1 than wild one. Therefore the mobility of water indicates difference in structure between the samples. High levels of glycogen are usually found in farmed cod which results in sharp fall of pH after slaughter. This low pH affects texture, because of collagen degradation which results in gap formation. The low pH also affects water holding capacity of the farmed cod. Measurements have shown higher pH in wild cod and this difference continues through low temperature storage. Texture measurements after 2 days storage indicates that farmed cod is lower in firmness than wild one, regardless of whether the fish is filleted pre- or post rigor. Sensory panels have also detected difference between wild and farmed cod. Wild cod is more tender and mushier, while the farmed one has more meaty texture, is more rubbery and has a clammy texture. Also the farmed fish has sweeter taste and more meaty taste and smell. Farmed cod is different from wild cod in many aspects. Therefore it is necessary to know those aspects and adjust processes especially for production of consumer goods from farmed cod.

Report closed until December 2011 / Report closed until December 2011

View report

Reports

Comparison of farmed and wild cod fillets during light salting

Published:

01/12/2008

Authors:

Valur Norðri Gunnlaugsson, Guðrún Anna Finnbogadóttir, María Guðjónsdóttir, Kolbrún Sveinsdóttir, Kristján Jóakimsson, Sigurjón Arason

Supported by:

AVS Fisheries Research Fund, Rannís Technology Development Fund

Contact

Valur Norðri Gunnlaugsson

Research Group Leader

valur.n.gunnlaugsson@matis.is

Comparison of farmed and wild cod fillets during light salting

The aim was to go through the processing process of lightly salted products made from wild cod after freezing and farmed cod before freezing, from filleting to consumers. This basic information was to be used to formulate new processing and transport processes for the export of lightly salted farmed fish products to southern Europe. There was a significant difference between the characteristics of pre-rigor cod farming and wild post-rigor cod during spraying and pickling. The uptake of brine was much higher in wild cod, but the farmed fish picked up a small amount of brine, which resulted in a small weight gain and low salt content. This large difference in salt uptake affected most of the variables examined, such as the water content and sensory properties of fillets. The difference was mainly in the texture factors, as the wild cod generally had a softer, juicier and softer texture, as it was more watery. The shelf life of farmed fish was longer. The main conclusion was that farmed fish products have different properties than wild fish products, but not worse. However, the timing of processing makes light salting difficult. If pre-rigor fish is salted immediately after filleting, death stiffness counteracts salt absorption. Therefore, traditional processes in the processing of wild post-rigor fish can not be transferred to prerigor volcanic fish. The research was part of the project "Processing and quality control of farmed cod, more specifically a summary for work component 5.

The aim of this part of this project was to look at the process of lightly salted cod, both from wild catch and farmed cod. To gather information from the processing part and try to improve the process and adjust the process to farmed cod. The results from this phase of the project strongly indicate that there is a big difference between farmed and wild cod when we look at physical properties. After injection and brine salting of the cod the wild cod had gained much weight while the farmed one did not gain any weight and therefore had low salt content. This difference in brine uptake resulted in difference between the sample groups in almost every research segment of this phase. The wild cod had more salt content and therefore more water content which resulted in more tender, softer and juicer fillets. It is obvious that those products are of different nature and farmed cod might not be suitable for the salting process because of limited brine uptake. However, despite the low salt content of the farmed cod, the fillets had better shelf life than the wild cod. The farmed cod has other characteristics than wild catch, and those characteristics have to be utilized in processing and production of consumer goods.

Report closed until December 2011 / Report closed until December 2011

View report

Reports

Comparison of properties of farmed cod and wild cod in loose freezing / Effects of freezing on muscle properties of wild and farmed cod fillets

Published:

01/12/2008

Authors:

Valur Norðri Gunnlaugsson, María Guðjónsdóttir, Guðrún Anna Finnbogadóttir, Kristján Jóakimsson, Sigurjón Arason

Supported by:

AVS R26-06 / AVS R&D Fund of Ministry of Fisheries in Iceland

Contact

Valur Norðri Gunnlaugsson

Research Group Leader

valur.n.gunnlaugsson@matis.is

Comparison of properties of farmed cod and wild cod in loose freezing / Effects of freezing on muscle properties of wild and farmed cod fillets

A comparison was made of the effects of freezing on different cod fillets. The raw material was farmed pre rigor cod and wild pre and post rigor cod. It was also investigated how fillets sprayed with brine came out of the freezer. The results showed that freezing did not in any way reduce the quality of these products. They performed well in quality assessment, emissions did not increase in samples and there was little or no change in the chemical content of these samples. The products all came out well from the freezing, whether it was farmed fish or wild fish and what treatment he received during the slaughter process.

The research was part of the project "Processing and quality control of farmed cod, more specifically a summary for work component 6.

In this project phase the aim was to look at effect of freezing on cod fillets from wild and farmed cod in different rigor stages. The goal was also to evaluate effects of brine injecting on the quality of the product after freezing and thawing. The results indicated that the freezing process did not affect the quality of those products. The quality assessment and chemical measurements did not indicate negative changes during freezing and thawing. All the samples got good results, both farmed and wild cod samples and the brine injection did not affect the quality of frozen products.

Report closed until December 2011 / Report closed until December 2011

View report

Reports

Bioactive products in the production of halibut and cod larvae / Bioactive products in production of halibut and cod larvae

Published:

01/12/2008

Authors:

Jónína Þ. Jóhannsdóttir, Rannveig Björnsdóttir, Eydís Elva Þórarinsdóttir, Kristjana Hákonardóttir, Laufey Hrólfsdóttir

Supported by:

AVS, Matvælasetur HA

Bioactive products in the production of halibut and cod larvae / Bioactive products in production of halibut and cod larvae

The aim of the project was to find ways to improve the survival and quality of cod and halibut larvae and to use environmentally friendly methods. The aim was also to open up the possibility of utilizing saithe peptides that could increase the value of saithe. The results of a previous project in halibut farming were promising and indicated that it was most convenient to treat larvae with peptides through feed animals, in addition to which it was necessary to further investigate the concentration of treatment. In connection with the project, new facilities for animal husbandry have been developed and set up at Fiskey hf. for research into the different treatments of feed animals and thus contribute to increased stability in the production of halibut juveniles. Repeated experiments with bioactive substances in the cultivation of equidae have been carried out and they seemed to tolerate a certain concentration of the substances. The main results of experiments in the early stages of cod farming indicate that treatment with saithe peptides results in good growth, noticeably faster development of internal organs and a much lower incidence of larval defects. However, it is clear that the effects of different levels of treatment need to be further investigated. There is strong evidence that IgM and lysozyme are present in cod larvae soon after hatching or much earlier than previously claimed, and that treatment appeared to stimulate their production. Treatment with saithe peptides does not appear to affect the bacterial flora of larvae, but a specific species composition was detected in the gastrointestinal tract of larvae in pots where larval survival and quality were optimal. This gives evidence that a certain species composition of bacterial flora is favorable for cod larvae.

The main goal of this project was to increase viability and quality of cod and halibut larvae before and during the first feeding period by using bioactive products. The aim was also to increase the exploitation and value of pollock. The findings of previous projects in halibut culture were promising and indicated that treating live feed is a suitable method to carry bioactive products to the larval intestines during first feeding but the intensities of treatment needed to be further investigated. New facilities have been developed in relation to the project for research in the live feed culture at Fiskey Ltd. to promote increased stability in the production of halibut fingerlings. Repeated experiments have been conducted in the culture of rotifers and results indicate good tolerance towards treatment with bioactive products in certain intensities. The overall results of the project indicated that pollock peptides may promote increased growth and quality of cod larvae during first feeding. The results also indicate the presence of IgM and lysozyme early post hatching, but it has not been observed in cod larvae of this size before. Furthermore, results also indicate that hydrolysates from pollock can stimulate the production of these factors in cod larvae. Treatment using pollock peptides, did not affect the bacterial community structure of live feed or cod larvae, however a similar structure was observed in larvae from the most successful production units different from other tanks. The results therefore indicate a bacterial community structure that may be preferable to the cod larvae.

View report

Reports

Biodiversity in hot springs at Þeistareykir and Gjástykki / Biodiversity in hot springs at Þeistareykir and Gjástykki

Published:

01/12/2008

Authors:

Sólveig K. Pétursdóttir, Snædís Huld Björnsdóttir, Sólveig Ólafsdóttir, Guðmundur Óli Hreggviðsson

Supported by:

Þeistareykir ehf

Contact

Guðmundur Óli Hreggviðsson

Strategic Scientist

gudmundo@matis.is

Biodiversity in hot springs at Þeistareykir and Gjástykki / Biodiversity in hot springs at Þeistareykir and Gjástykki

The project was part of an environmental assessment for the planned geothermal utilization and involved a study of the ecosystem in the hot springs at Þeistareykir and Gjástykki. A total of 27 samples were taken. Temperatures and acidity at the sampling points ranged from 33-96 ° C to pH 1.9-8.6. The species composition of the micro-organisms and their proportions were determined by nucleic acid amplification and sequencing of the 16S rRNA species-determining gene using bacterial and antimicrobial markers. A total of 21 bacteria and / or ancient bacteria were detected in 21 samples. DNA sequences were classified into species according to 98% affinities and compared with Genbank sequences for species analysis. In acidic hot springs at Þeistareykir, species within the bacterial assemblages β-, δ-, and γ-Proteobacteria and Aquificae were most common, especially acidic and / or primitive species that use sulfur and iron compounds and bind CO2. In vapors in lava caves at Þeistareykir at higher acidity levels (pH 6.7-8.6), the species Acidobacteria, Actinobacteria, Chloroflexi and Deinococcus-Thermus were prominent. Deinococcus-Thermus and Verrucomicrobium were the most common in samples from the hot springs in Gjástykki (pH 4.4-6.9). Many of these species are non-primitive. Ancient bacteria were found mainly in acidic areas at Þeistareykir, and in all samples from Gjástykki, but not in steam eyes in lava at Þeistareykir, as the acidity level is higher there. Species within the Crenarchaeota group were found in all of these samples, but species within the Euryarchaeota were bound to samples from the surface formations and acid soils. Most ancient bacteria can live primitive life. Biodiversity (Nt / Nmax) bacteria was most often between 1-3 and 1-2 among ancient bacteria. These low values are typical of peripheral ecosystems, where one species is in a very high proportion. Numerous new species were found in the samples, especially bacteria in steam eyes in lava at Þeistareykir and in hot springs in Gjástykki. Also, species of Euryarchaeota within ancient bacteria often showed a low kinship percentage and are therefore considered new species.

Due to future plans for utilizing the geothermal power at Þeistareykir and Gjástykki, an environmental assessment of the biodiversity in hot springs from these sites was carried out. A total of 27 samples were taken from various sites at temperatures of 33-96 ° C and pH 1.9-8.6. The species composition and ratios of thermophiles were estimated by PCR and sequencing of the 16S rRNA genes using bacterial and archaeal primers. Microbial species were detected in 21 samples. DNA sequences were grouped at the 98% similarity species level and compared with available sequences in Genbank for species determination. Species belonging to the bacterial phyla of β-, δ-, and γ-Proteobacteria and Aquificae were dominating in samples from the solfatara fields of Þeistareykir. These were mainly acidophiles and autotrophs capable of utilizing sulfur- and iron compounds and fixing CO2. A totally different pattern of species composition was observed in samples from fumaroles at the lava fields of Þeistareykir at higher pH (6,7-8,6) than in the solfataras. These were mainly Acidobacteria, Actinobacteria, Chloroflexi and DeinococcusThermus. In Gjástykki, (pH 4.4-6.9) Deinococcus-Thermus and Verrucomicrobium sp. were dominating. These are mainly heterotrophs. Archeal species were found as well in the solfatara fields at Þeistareykir and also in hot springs at Gjástykki, but not in the high pH fumaroles at Þeistareykir lava fields. Species from the Crenarchaeota group were found in the samples, but species belonging to the Euryarchaeota group were only detected in solfatara soil samples and sulfur / iron precipitates. These were mainly autotrophs. Biodiversity (Nt / Nmax) was calculated for all samples and estimated at 1-3 among the Bacteria and 1-2 among the Archaea. These low values are typical for extreme environments where one species is highly dominating. Many novel species were found in the samples, especially in soil from fumaroles at the lava field at Þeistareykir and in hot springs at Gjástykki. Euryarchaeal species within the Archaea domain often showed low similarity to known species and most likely represent new species.

View report

Reports

Íslenskt bygg til matvælaframleiðslu / Icelandic barley for food production

Published:

01/12/2008

Authors:

Ólafur Reykdal (editor / editor), Jónatan Hermannsson, Þórdís Anna Kristjánsdóttir, Jón Óskar Jónsson, Aðalheiður Ólafsdóttir, Emilia Martinsdóttir, Birgitta Vilhjálmsdóttir, Jón Guðmundsson, Guðmundur Mar Magnússon.

Supported by:

The Agricultural Productivity fund

Contact

Ólafur Reykdal

Project Manager

olafur.reykdal@matis.is

Íslenskt bygg til matvælaframleiðslu / Icelandic barley for food production

The project "Increased value from Icelandic barley" was carried out in the years 2006 to 2008 in collaboration with Matís ohf, the Agricultural University of Iceland, barley producers and food companies. Measurements were made of nutrients, contaminants and microorganisms in the building. The hygienic beta-glucans, which are water-soluble fiber, attracted special attention. The safety of the barley was satisfactory according to measurements of microorganisms and contaminants. Tests on baking barley bread took place in companies and it was shown that Icelandic barley is well suited for baking products. Sensory evaluation and consumer surveys were conducted on barley bread and similar breads without barley. The barley bread had its own characteristics and received generally good reviews. Barley malt was produced and then used as a raw material in brewing. It was possible to produce beer of satisfactory quality, but the main problem with the malt production was the low germination rate of the barley. Draft quality requirements for Icelandic barley for the production of baked goods and barley malt were compiled.

The project “Increased value of Icelandic barley” was carried out during the years 2006 to 2008 in cooperation between Matis ohf, Agricultural University of Iceland, barley producers and food manufacturers. Nutrients, contaminants and microbes were measured in Icelandic barley. The water soluble dietary fiber, beta-glucan, was of special interest. The safety of Icelandic barley was sufficient according to measurements of contaminants and microbes. Barley was tested for bread baking and the result was that Icelandic barley can be used for bread making. Breads with and without barley were tested by sensory evaluation and consumer testing. Barley breads had special sensory properties and were well accepted. Malt was produced from Icelandic barley and used for production of beer. The beer was of good quality but the main problem with the malt production was low proportion of sprouting barley. Quality criteria were drafted for Icelandic barley for production of bakery products and malt.

View report

Reports

Fungicides and the MYCONET project / Mycotoxins and the MYCONET project

Published:

01/12/2008

Authors:

Ólafur Reykdal

Supported by:

SafeFoodEra

Contact

Ólafur Reykdal

Project Manager

olafur.reykdal@matis.is

Fungicides and the MYCONET project / Mycotoxins and the MYCONET project

Mycotoxins are many substances that can be formed in some types of fungi. Fungicides can have a variety of harmful effects on humans and animals. All available information on fungal toxins in food on the Icelandic market was compiled. Research lacks the formation of fungal toxins in the Icelandic environment, but it is likely that some of the substances are not formed in fields in this country due to low ambient temperatures. The MYCONET project was a European network project on fungal toxins in wheat for food and feed production. A system was developed to assess the emerging risk of fungal toxins, in particular the substances formed in Fusarium fungi. A special survey was conducted on the needs of regulators, companies and farmers for information on fungal toxins. Evidence of antifungal risk was examined and ranked by importance. The so-called Delphi method was used for this. Detailed information was then obtained on the most important clues. Models were developed to predict the presence of fungal toxins based on evidence of emerging risks.

Mycotoxins are a varied group of contaminants that can be formed in molds. They can be harmful to humans and animals. Information about mycotoxins in foods on the Icelandic market was collected. Research on mycotoxins in Iceland have been limited but it is likely that some of the mycotoxins do not form in open fields because of low temperature. The MYCONET project was a European network of information sources for the identification of emerging mycotoxins in wheat-based supply chains. Main emphasis was on mycotoxins produced by Fusarium spp. The needs of stakeholders and other end users (risk managers) were investigated. The most important indicators for emerging mycotoxins were identified together with evaluation of their relative importance by the Delphi method. Information sources on these key indicators were evaluated. Finally, an information model was developed to predict emerging mycotoxin risk from indicators and information sources.

View report

News

Hróður Matís travels far and wide - Matarsmiðjan á Höfn in Ny Nordisk Mad

Recently, an article appeared in Ny Nordic Mad, a fun project about the food culture of the Nordic people.

It mentions Matarsmiðjan á Höfn and how local food production creates increased opportunities in the local area. Article: „Nordic Delights ”- food memories from Iceland

News

Press release - Kerecis ehf. and Matís ohf. make a framework agreement for research

In a press release from Kerecis ehf. and Matís ohf. sl. On Friday, the companies announced the signing of a framework agreement for research into fish proteins for the treatment of various medical tissue problems in humans.

The research agreement between the companies is for one year but contains an extension clause. Matís is expected to carry out all of Kerecis' protein research at the company's new biotechnology center in Sauðárkrókur and at its research facility in Reykjavík. Matís has extensive experience and expertise related to the production of products from fish proteins and has first-class research and development facilities for such research.

The full press release can be found here.

News

The Technology Development Fund allocates grants - Matís in collaboration

The Board of the Technology Development Fund decided at its meeting, on Tuesday 25 November 2008, with whom to enter into agreements on support from the fund.

In short, Matís collaborates with 4 of the 18 individuals / companies with which the Technology Development Fund intends to enter into agreements.

They are:

Project titleProject manager at MatísPartner company / institution
Long live the first modelRannveig BjörnsdóttirAkvaplan-niva in Iceland
Simulation of cooling processesBjörn MargeirssonPromens Tempra ehf.
Staining of charJón ÁrnasonFóðurverksmiðjan Laxá hf.  
Offensive new targetRóbert Hafsteinsson3X Technology ehf.

A complete list of those with whom the Technology Development Fund decided to enter into an agreement can be found here.

Matís congratulates the above companies on the course.

Information on various versions of Matís, including reports, posters, scientific articles, etc. can be found here.

EN