News

Course on food handling for canteen and kitchen staff

Contact

Óli Þór Hilmarsson

Project Manager

oli.th.hilmarsson@matis.is

Matís offers courses on food handling, hygiene, main risks and food safety, which are specifically aimed at staff in canteens, kitchens and restaurants. The purpose of the courses is to ensure that the knowledge and understanding of those who handle food on food safety and hygiene is good, in order to minimize the risk of harmful infections reaching food and thereby threatening the health and safety of consumers. The curriculum is recognized by the Swedish Food Agency. The course will be offered both as an on-site course and as an online course.

Matís and its experts are the sponsors of this project, but the study material is recognized by the Swedish Food Agency. The educational material is prepared from various data such as the laws and regulations that deal with food, from previous research and the study and presentation material that has been prepared by Matís and Matvælastofnun.

It is estimated that two to three lessons (3×45 min) will take the student to read over and absorb what is presented and to take an exam at the end of the course. If the participant has passed the test, a certificate, known as a food safety certificate, is issued. The certificate is a confirmation that the participant has acquired solid knowledge as a result of working with food handling according to the requirements of the regulations that canteens and restaurants must comply with. The 80% correct answer is required and it is possible to repeat the test twice.

The following episodes are played:

1 Food Safety

According to the World Health Organization, about 240,000 people die each year from foodborne illnesses or food poisoning, and one third are children under the age of five. It can therefore be said that food safety is dead serious. This section reviews the main hazards in food and their possible origins. Special emphasis is placed on pathogenic microorganisms, which are the main ones and how they get into food. It is also discussed how they manage to multiply and what are the main consequences if they manage to infect consumers.

It discusses the dangers associated with food and goes over the categories (physical, chemical and biological dangers, where it is discussed what kind of dangers there are and where they might be). It also discusses how to prevent the dangers from entering food and consumers. The handling and storage of food is reviewed, and cleaning and handling of food is also discussed. Finally, the necessity of registrations is reviewed.

2 Food handling and storage

This section discusses how to protect food from external contamination. It also covers the importance of the right temperature when cooking, serving, cooling and storing food.

3 Cleanliness

Review the importance of cleaning and disinfecting the environment and utensils used in food preparation, and special emphasis is placed on the hygiene and health of those who handle exposed food.

4 Hazard Analysis and Critical Control Points (HACCP)

Food regulations stipulate that all food handling and processing must be based on the HACCP philosophy. It goes over what it means and what requirements are made to different companies and institutions.

5 Allergens

Certain foods and ingredients can trigger strong allergic reactions in certain individuals. It discusses what foods and ingredients they are and what requirements are placed on those who offer foods that contain such ingredients.

The price of a webinar is 22 thousand ISK. Dates will be announced later.

Further information is provided by Óli Þór Hilmarsson, olithor@matis.is.

News

E. coli STEC in ground beef – Source of foodborne infection confirmed by whole-sequencing of Matís

Contact

Sæmundur Sveinsson

Research Group Leader

saemundurs@matis.is

Matís can identify whether E.coli STEC is in food products

Over the past two weeks, Matís' experts have been working hard to trace the source of the group infection E. coli STEC that appeared in a kindergarten in Reykjavík in mid-October. The study was carried out in close collaboration with the National Food Agency, the Epidemiologist, the Department of Pathology and Virology of Landspítál and the Reykjavík Health Authority.

A number of suspect foods were screened for
E. coli STEC but this bacterium can hide in many places. It soon became clear that mincemeat, which was used in cooking at the kindergarten, was by far the most likely source of the infection. A large number of bacterial strains were cultured from the mince, and finally three strains containing characteristic virulence genes and of the same serotype as the strain isolated from the patient were isolated. The genomes of these four strains were finally sequenced at Matís. That analysis revealed that the strains from the hack and the patient were genetically identical. Matís was a pioneer in the implementation of this methodology in Iceland to trace the origin of foodborne infections.

Finally, Matís would like to draw attention to the fact that the company offers analyzes of E. coli STEC in food. Matís is a reference laboratory (NRL) for these analyzes in Iceland. This means that Matís constantly updates his methods according to the latest knowledge and methods in Europe. E. coli STEC is a bacteria that can cause serious illness.

Press release MAST

News

A new database on microorganisms in food and production environments

Contact

Sigurlaug Skírnisdóttir

Project Manager

sigurlaug.skirnisdottir@matis.is

Microorganisms are part of our food. However, knowledge of which microorganisms are found in food and in the production environment is still limited. A recent study, in which Matís participated, has provided new insight into this subject. The results will contribute to a better understanding of the effect of microorganisms on various aspects of food, such as shelf life, safety, quality and taste.

The study was part of the European project MASTER, which brought together 29 partners from 14 countries. One of the goals of the project was to create a database of microorganisms in food by sequencing genetic material from 2533 samples taken from various foods and their production environment. Matís was in charge of studying samples from Icelandic fish processing plants, but the research project covered all major food groups. This is the largest study ever conducted on the microbial composition of food and production environments, but a better understanding of these microbes could contribute to the improvement of people's health, as some microbes from food can become part of our microflora.

A total of 10899 food-associated microorganisms were identified in these samples, half of which were previously unknown species. The results showed that food-related microbes form an average of about 3% of the intestinal flora of adults and about 56% of the intestinal flora of infants.

"These results suggest that some of the microbes in our gut come directly from food, or that humans have historically acquired them from food, where they have later adapted and become part of the human gut flora," says Nicola Segata, a microbiologist at the University of Trento and the European Cancer Institute in Milan. Although 3% may seem like a low percentage, these microbes can have a major impact on the functioning of the intestinal flora. The database is therefore an important contribution to science and public health, as it will be useful for research on the effects of food-related microorganisms on our health.

Although few pathogenic microorganisms were identified in the food samples, there were several species that may be undesirable due to their effects on the taste or shelf life of foods. Knowledge of which microorganisms belong to certain foods can therefore be useful for producers, both large and small, to improve product quality. This information can also assist food control in defining which microorganisms should and should not be present in certain foods as well as tracking and certifying their origin. The results of the study were published last August 29 in the magazine Cell Press and the database is now accessible. Findings specifically related to seafood have also been published in the journal Heliyon, published by Cell Press. As mentioned above, the research is part of the European research project MASTER and was funded by Horizon 2020, Horizon Europe, the Italian Ministry of Foreign Affairs, the European Research Council, the Spanish Ministry of Science and Innovation, the Science Foundation of Ireland and the Irish Ministry of Agriculture, Food and Fisheries.

Reports

Distribution of arsenic species by seaweed parts, especially arsenic lipids

Published:

02/04/2024

Authors:

Rebecca Sim, Ásta H. Pétursdóttir, Natasa Desnica, Jörg Feldmann, Guðmundur Haraldsson, Karl Gunnarsson, Liberty O'Brien, Marta Weyer and Hildur I. Sveinsdóttir.

Supported by:

Icelandic Research Fund

Contact

Rebecca Sim

Ph.D. Student

rebecca@matis.is

Distribution of arsenic species within the macroalgae 
– an emphasis on arsenolipids

Algae are rich in minerals and desirable bioactive substances, but they can also absorb large amounts of trace elements, such as toxic heavy metals, including the element arsenic. Arsenic is found as inorganic arsenic in the sea and is taken up in that chemical form by the algae. In the algae, however, arsenic is detected not only as inorganic arsenic but as a wide range of arsenic compounds, so-called organic compounds of arsenic, for example arsenosaccharides and arsenolipids. There is still a lot of mystery about the origin of these compounds. In general, organic forms of arsenic have been considered quite harmless, unlike inorganic arsenic, which is a known carcinogen. However, recent studies on arsenolipids have shown that they can be as cytotoxic as inorganic arsenic. It is also believed that arsenosugar can possibly have long-term negative effects with regular consumption. Levels of arsenolipids are generally not high in algae, but the starting point of their production is thought to occur in algae. Algae are part of the regular food intake in the Eastern part of the world and are becoming increasingly popular in the West, so more information about these compounds is urgently needed to fully assess the risks associated with their consumption as well as to ensure that appropriate regulations are put in place regarding their maximum levels in foodstuffs. In order to understand the toxicological effects of algae consumption, it is extremely important that more data be collected on all the different chemical forms of arsenic, in particular on arsenolipids, but limited information is currently available on them. Samples of red, green and brown algae were collected near Grindavík and Kjalarnes, at two different points in time. The samples were thoroughly analyzed for heavy metals and arsenic analysis was carried out to better understand the chemical form in which the arsenic was present. Selected samples of brown, red and green algae were measured for species analysis of arsenolipids using mass spectrometry HPLC-ICP-M/ESI-MS/MS and HPLC-qToF-MS. In addition, brown macroalgae were divided into biological fractions to determine whether the distribution of arsenic species is uniform throughout the seaweed. Limited information exists globally on arsenolipids in seaweed, so this extensive profiling of them in different species of algae will help elucidate how these enigmatic organic compounds are formed and where they are stored. The data can also be used for risk assessment of arsenic species in seaweed for human consumption and can therefore influence future food safety legislation.
_____
In recent years seaweed has gained popularity as a health food due to its high content of minerals and vitamins. However, seaweeds may also accumulate high levels of potentially toxic elements – in particular arsenic, which may become incorporated into larger biological molecules such as sugars and lipids. It is unclear how these organic arsenic compounds are formed/stored and if they may serve a biological purpose (ie, detoxification or energy storage). However, toxicological studies into arsenic-containing lipids have demonstrated cytotoxicity comparable to that of arsenite, a known carcinogen, and arsenic-containing sugars are suspected to display toxicity with chronic exposure. This project aims to investigate variations in the distribution of arsenic compounds throughout several classes and species of seaweed. Samples of brown, red and green macroalgae were collected from two locations in Iceland across two different months and analyzed for several potentially toxic elements as well as hydrophilic arsenic speciation using HPLC-ICP-MS. Brown macroalgae were additionally sectioned into anatomical parts to determine if the distribution of arsenic species differs throughout the thallus. Select samples were chosen for state-of-the-art lipophilic arsenic speciation using HPLC-ICP-MS/ESI-MS/MS and HPLC-qToF-MS. Limited information is available on arsenic speciation in seaweed thus it is hoped that this extensive profiling of several different species will help elucidate how these unusual compounds are formed and stored. The data from this project will also contribute to the necessary information needed for the risk assessment of arsenic species in seaweed for human consumption and may have an impact on future food safety legislation.

View report

Reports

Drying and storing of harvested grain - A Review of Methods / Drying and storage of grain

Published:

01/04/2018

Authors:

Ólafur Reykdal

Supported by:

Northern Periphery and Arctic Program

Contact

Ólafur Reykdal

Project Manager

olafur.reykdal@matis.is

Drying and storing of harvested grain - A Review of Methods / Drying and storage of grain

In the Arctic, grain is generally cut so moist that it is quickly damaged if it is not dried or soaked in feed. Drying grain is costly and therefore the choice of equipment and energy sources must be carefully considered. The use of geothermal energy is recommended where possible, as geothermal energy should be the cheapest energy source. Mixed solutions can work well, such as geothermal energy and diesel fuel. Agriculture needs to aim for increased sustainability and then geothermal and electricity are good options. Some molds in the field or in storage can form mycotoxins (fungal toxins) in humid and warm conditions. Mycotoxins can be harmful to human and livestock health. The risk of mycotoxin imaging is minimal in cold northern areas. However, it is necessary to monitor the quality of grain in storage and monitor the possible formation of mycotoxins. This report provides an overview of drying methods, energy sources and grain safety and is the basis for advice and research on grain drying.

In the Northern Periphery Region, grains are usually harvested at moisture contents too high for safe storage. Therefore the grain should be dried (or wet processed) as soon as possible. The drying process is expensive and the selection of equipment and fuel should be studied carefully. Where available, the use of geothermal water is recommended. In Iceland, geothermal energy has been found to be the cheapest energy source for grain drying. The use of mixed solutions, eg geothermal energy and diesel, is possible. Grain producers should aim at increased sustainability. Excellent solutions are geothermal energy and electricity. Mold in the field or in stores can produce mycotoxins under humid conditions and quite high temperature. Mycotoxins can harm the health of humans and animals. The existence of mycotoxins in grain grown under the cool conditions of northern regions is likely to be minimal but the situation should be studied and monitored. This report reviews grain drying methods, possible energy sources, safety aspects and is the basis for guidelines and case studies.

View report

Reports

Chitosan treatments for the fishery industry - Enhancing quality and safety of fishery products

Published:

01/04/2015

Authors:

Hélène L. Lauzon, Eyjólfur Reynisson, Aðalheiður Ólafsdóttir

Supported by:

AVS (contract R 13 099-13)

Contact

Aðalheiður Ólafsdóttir

Sensory evaluation manager

adalheiduro@matis.is

Chitosan treatments for the fishery industry - Enhancing quality and safety of fishery products

This report is a summary of three shelf life experiments in which seafood was treated with different chitosan solutions, either on board a fishing vessel (with shrimp and cod) or after slaughter and pre-processing of farmed salmon. This is a continuation of Matís 'report 41-12 where chitosan solutions were developed and tested on different fish products at Matís' experimental stage. The purpose of this project was to confirm the possibility of chitosan treatment of seafood in the fishing industry. The results show that the concentration of chitosan solutions and the storage temperature of seafood affect the antimicrobial activity and the deterioration of the quality of the fish products. Solutions A and B had limited activity in whole shrimp (0-1 ° C), but slower color changes occurred as the shell took on a black color. Treatment of salmon (1.4 ° C) and cod (-0.2 ° C) with solutions C and D significantly slowed the growth of erythrocytes during the first 6 days, leading to a prolongation of the freshwater phase. The storage temperature of cod fish affected the effectiveness of the solutions. When cod (2-3 ° C) was stored in worse conditions and filleted 6 days after treatment, there was a slightly lower microbial load on the fillets at the beginning of the storage period, which resulted in a slight improvement in the quality of the products. Better storage conditions are necessary to limit the effectiveness of chitosan treatment.

This report evaluates the efficiency of different chitosan treatments (A, B, C, D) when used by fishery companies, aiming to reduce seafood surface contamination and promote enhanced quality of fishery products: whole cod, shrimp and farmed salmon. The alkaline conditions establishing in chilled raw shrimp during storage (0-1 ° C) is the probable cause for no benefits of chitosan treatments A and B used shortly after catch, except for the slower blackening of head and shell observed compared to the control group . On the other hand, salmon treatments C and D were most effective in significantly reducing skin bacterial load up to 6 days post-treatment (1.4 ° C) which inevitably contributed to the extended freshness period (by 4 days) and shelf life observed. Similarly, freshness extension and delayed bacterial growth on skin was evidenced after 6 days of storage in whole cod (-0.2 ° C) treated with solution D. For cod stored at higher temperature (2-3 ° C) and processed into loins on days 3 and 6 posttreatment, a slower microbial deterioration was observed only during early storage of loins. The contribution of chitosan treatments to sensory quality enhancement was not clearly demonstrated in these products. Based on the findings, better chilling conditions should contribute to an enhanced effect of chitosan skin treatment towards quality maintenance.

View report

Reports

Safe Food: Increased food safety in Iceland / Örugg Matvæli: Increased food safety in Iceland

Published:

22/12/2014

Authors:

Roland Körber, Hrönn Ólína Jörundsdóttir, Margrét Björk Sigurðardóttir, Helga Gunnlaugsdóttir

Supported by:

The Ministry of Industry and Innovation, The German state

Safe Food: Increased food safety in Iceland / Örugg Matvæli: Increased food safety in Iceland

It is necessary for Iceland to have adequate capacity and infrastructure so that the government and official regulators have the capacity to monitor food safety in accordance with international standards and regulations. The project "Safe Food" was a bilateral project between Iceland and Germany and its main purpose was to increase food security in Iceland and protect consumers with regard to food safety and wholesomeness in the Icelandic market. The project was carried out in collaboration between Matís, Matvælastofnun (MAST) and the Ministry of Industry and Innovation in Iceland and the German Ministry of Food and Agriculture as well as key institutions in the field of food safety in Germany, ie the Federal Institute for Risk Assessment (BfR) and the Lower Saxony State Office for Consumer Protection. and Food Safety (LAVES). To improve the infrastructure in Iceland, specialized diagnostic equipment for food safety research was purchased through an open tender and installed in Matís' facilities in Reykjavík. A German consultant was located in Iceland for 6 months to provide professional knowledge in the field of food safety that was necessary for the progress of the project as well as to coordinate work in the project. German experts from BfR and LAVES came to Matís and Matvælastofnun to train the experts of these institutions in procedures that were defined as priorities in the field of chemical analysis and official supervision in the field of food safety. Introductory meetings were also held to inform the main stakeholders in Iceland about the progress of the project and to increase their awareness of the importance of food safety in the entire production and food chain. By the end of the project, Icelandic specialists had been trained in work processes in specific priority areas for monitoring and chemical analysis in the field of food safety. The project has therefore contributed to both improved research facilities and the capacity of both Icelandic institutions in terms of sampling and chemical analysis of important food safety aspects such as monitoring of plant pesticide residues and undesirable substances in food and feed.

To ensure a high level of protection for human health and consumers' interest in relation to food safety, it is essential that Iceland has the appropriate infrastructures to carry out inspections and official controls of food products in line with the requirements of European food legislation. A bilateral project between Iceland and Germany was established and carried out in 2014 to assist Iceland to achieve this goal. The objective of the project was to strengthen Iceland's ability to ensure food safety and protect consumer interests in relation to food safety. The bilateral project was carried out in collaboration between Matís, Icelandic Food and Veterinary Authority (MAST) and the Ministry of Industries and Innovations in Iceland from the Icelandic side and the German Federal Ministry of Food and Agriculture, Federal Institute for Risk Assessment (BfR) and Lower Saxony State Office for Consumer Protection and Food Safety (LAVES) from the German side. The laboratory infrastructure for food safety analysis in Iceland wasimproved by procuring new laboratory equipment through an open tender process and installing them at Matísfacilities in Reykjavík. A German Resident Advisor resided in Iceland for 6 months to provide the necessary professional experience in areas of food safety covered by the project and coordinate the project activities. German experts from BfR and LAVES came to Matís and MAST to train experts of these institutes in procedures identified as priority analytical and official control proceduresto ensure food safety in Iceland. A number of stakeholder events were also carried out to inform key stakeholders of project activities and increase their awareness of importance of food safety in the entire food chain. At the end of the project the majority of the priority procedures were implemented at the Icelandic institutes and the Icelandic experts that participated in the project were well informed and trained. The project has therefore contributed significantly to the improvement of both institutional and laboratory capacity in Iceland concerning sampling and analysis in important areas such as monitoring for residues of plant protection products, contaminants in food and feed as well as genetically modified food and feed.

View report

Reports

Evaluation of antibacterial and antioxidant properties of different chitosan products

Published:

01/12/2011

Authors:

Hélène L. Lauzon, Patricia Yuca Hamaguchi, Einar Matthíasson

Supported by:

AVS (contract R 11 074‐11)

Evaluation of antibacterial and antioxidant properties of different chitosan products

In this study, the bactericidal and antioxidant properties of twelve different chitosan substances from Primex ehf. The effect of viscosity / molecular weight (150-360 KDa) and the degree of deacetylation (A = 77‐78%; B = 83‐88%; C = 96‐100%) on the activity of the substances were assessed. The effect of pH (6 and 6.5) and temperature (7 and 17 ° C) on bactericidal activity was also examined. Antioxidant activity was assessed by four methods: oxygen radical absorbance capacity (ORAC), ferrous ion chelating ability, reducing power and DPPH radical scavenging ability. Variable antioxidant activity was found in different chitosan substances. A1 had the highest but actually slight reducing and binding properties, while B3 and B4 had the highest ORAC values. Chitosans with 96-100% deacetylation had the highest in vitro antioxidant activity, regardless of their molecular weight. Similarly, the bactericidal activity of the chitosan substances varied among the bacterial species studied, in addition to which the pH and temperature effects were different. However, some chitosan substances were found to work well on all bacterial species, eg A3 ‐ B2 ‐ B3 ‐ C1.

This report evaluates twelve different types of chitosan products manufactured by Primex ehf and tested for their antibacterial and antioxidant properties in a suitable carrier solution. This study examined the effect of viscosity / molecular weight (150‐360 KDa) and degree of deacetylation (A = 77‐78%; B = 83‐88%; C = 96‐100%) on the properties evaluated, as well as the influence of pH (6 and 6.5) and temperature (7 and 17 ° C) on the antibacterial activity of the chitosan products. The antioxidant activity was evaluated using four assays: oxygen radical absorbance capacity (ORAC), ferrous ion chelating ability, reducing power and DPPH radical scavenging ability. The different chitosan products had different antioxidant properties. A1 had both some reducing and chelating ability, while B3 and B4 had some oxygen radical absorbance capacity. The radical scavenging ability of high DDA (96‐100%) chitosan products was emphasized. Similarly, the antibacterial activity of the different chitosan solutions differed among the bacterial species evaluated as well as pH and temperature conditions. Nevertheless, some products demonstrated antibacterial activity towards all strains tested: mainly A3 ‐ B2 ‐ B3 ‐ C1.

Report closed until 01.01.2014

View report

Reports

Mercury and other undesirable trace elements in brown trout (Salmo trutta trutta L.) from Lake Thingvallavatn

Published:

01/12/2009

Authors:

Jóhannes Sturlaugsson, Hrönn Ólína Jörundsdóttir, Franklín Georgsson, Helga Gunnlaugsdóttir

Supported by:

Orkuveita Reykjavíkur's Environment and Energy Fund (UOOR), Matís ohf, Laxfiskar ehf

Mercury and other undesirable trace elements in brown trout (Salmo trutta trutta L.) from Lake Thingvallavatn

The aim of the project was to obtain information on the amount of mercury and other undesirable trace elements in Þingvallaurrið, taking into account their size and prehistory with human nutrition in mind. That goal also meant that the results should be communicated to the public as well as stakeholders in the Þingvellir area. The study was conducted in collaboration with Matís and Laxfiskar. A total of 43 trout in the size range of 23-98 cm and 0.13‐14 kg were studied. The trout covered by the study were caught in the years 2002-2008. For some of them, information from traditional labels was available. In addition, samples were taken from several fish that had a prehistory that was recorded in detail with measuring instruments in terms of their behavior and environment. The results of these studies on the behavioral ecology of the fish showed that some of them sought to stay by hot springs that flow into Þingvallavatn below Nesjahraun. Biological factors of the fish such as size, age, sex, sexual maturity, etc. were recorded for each individual and samples taken from the flesh and trace elements analyzed. The results of trace element analyzes of the fish's flesh show that there is a considerable probability that fish longer than 60 cm will contain more mercury than is permitted by Icelandic and European regulations (0.5 mg / kg mercury). According to the recommendations of the Food Administration (MAST), which is an official regulator of food in Iceland, it is not permitted to sell fish that contain more than 0.5 mg / kg of mercury. The results of the study showed that there was a strong correlation between the length of the trout and the amount of mercury in it. Biomagnification is the most likely reason for the high concentration of mercury in trout from Þingvallavatn, which usually become rather large and old, as the concentration of mercury increases as it moves up the food chain. Þingvellir trout is at the top of the food chain, where it eats most of its age, mainly char, primarily the brown variety. It is desirable that further research be carried out in this field to get a picture of the origin of mercury in the Þingvellir landslide and the process of its accumulation.  

The aim of the project was to study the occurrence and quantity of mercury as well as other undesirable trace elements in brown trout from Lake Thingvallavatn in relation to the fish size and their life history. Public health was the main issue of this study. The aim was also to disseminate the results to the public and all stakeholders. The study was carried out in co ‐ operation of Matis and Salmon and Trout Research (Laxfiskar). In total, 3 brown trout individuals, 23‐98 cm long and weighing 0.13‐14 kg, were examined. The trout were caught during the years 2002 to 2008. Information from conventional tagging studies were available for some of the individuals. For six fish additional detailed results from studies on their behavior and corresponding environment was available, due to use of electronic tags (data storage tags and ultrasonic tags). These studies on the behavioral ecology of the trout showed that some of the individuals preferred areas where hot spring water runs into Lake Thingvallavatn at the Nesjahraun area. Individuals were measured and examined in order to get information on their size, condition and life history. Flesh samples were taken from the fish for trace element analyzes. The results of the study show that there is a positive linear relationship between the mercury concentration and the fish length. These analytical results showed that there is significant probability that fish that is 60 cm in length or larger, can contain mercury in quantity that exceeds the maximum allowed limit according to Icelandic and European regulations (0,5 mg / kg mercury). According to the Icelandic Food and Veterinary Authority (MAST), food products containing mercury in higher concentration than 0,5 mg / kg should not be sold or distributed. Biomagnification is presumed to be the cause for high concentration of mercury in the bigger and older brown trout from Lake Thingvallavatn as the results show that brown trout is a top predator in Lake Thingvallavatn and feeds mainly on charr (Salvelinus alpinus L.), especially the pelagic morph murta. Further research is needed on the origin of mercury in brown trout in Lake Thingvallavatn and on the route of the corresponding biomagnifications in the food chain of the lake.

View report

Reports

Fungicides and the MYCONET project / Mycotoxins and the MYCONET project

Published:

01/12/2008

Authors:

Ólafur Reykdal

Supported by:

SafeFoodEra

Contact

Ólafur Reykdal

Project Manager

olafur.reykdal@matis.is

Fungicides and the MYCONET project / Mycotoxins and the MYCONET project

Mycotoxins are many substances that can be formed in some types of fungi. Fungicides can have a variety of harmful effects on humans and animals. All available information on fungal toxins in food on the Icelandic market was compiled. Research lacks the formation of fungal toxins in the Icelandic environment, but it is likely that some of the substances are not formed in fields in this country due to low ambient temperatures. The MYCONET project was a European network project on fungal toxins in wheat for food and feed production. A system was developed to assess the emerging risk of fungal toxins, in particular the substances formed in Fusarium fungi. A special survey was conducted on the needs of regulators, companies and farmers for information on fungal toxins. Evidence of antifungal risk was examined and ranked by importance. The so-called Delphi method was used for this. Detailed information was then obtained on the most important clues. Models were developed to predict the presence of fungal toxins based on evidence of emerging risks.

Mycotoxins are a varied group of contaminants that can be formed in molds. They can be harmful to humans and animals. Information about mycotoxins in foods on the Icelandic market was collected. Research on mycotoxins in Iceland have been limited but it is likely that some of the mycotoxins do not form in open fields because of low temperature. The MYCONET project was a European network of information sources for the identification of emerging mycotoxins in wheat-based supply chains. Main emphasis was on mycotoxins produced by Fusarium spp. The needs of stakeholders and other end users (risk managers) were investigated. The most important indicators for emerging mycotoxins were identified together with evaluation of their relative importance by the Delphi method. Information sources on these key indicators were evaluated. Finally, an information model was developed to predict emerging mycotoxin risk from indicators and information sources.

View report
EN