Reports

Íslenskt bygg til matvælaframleiðslu / Icelandic barley for food production

Published:

01/12/2008

Authors:

Ólafur Reykdal (editor / editor), Jónatan Hermannsson, Þórdís Anna Kristjánsdóttir, Jón Óskar Jónsson, Aðalheiður Ólafsdóttir, Emilia Martinsdóttir, Birgitta Vilhjálmsdóttir, Jón Guðmundsson, Guðmundur Mar Magnússon.

Supported by:

The Agricultural Productivity fund

Contact

Ólafur Reykdal

Project Manager

olafur.reykdal@matis.is

Íslenskt bygg til matvælaframleiðslu / Icelandic barley for food production

The project "Increased value from Icelandic barley" was carried out in the years 2006 to 2008 in collaboration with Matís ohf, the Agricultural University of Iceland, barley producers and food companies. Measurements were made of nutrients, contaminants and microorganisms in the building. The hygienic beta-glucans, which are water-soluble fiber, attracted special attention. The safety of the barley was satisfactory according to measurements of microorganisms and contaminants. Tests on baking barley bread took place in companies and it was shown that Icelandic barley is well suited for baking products. Sensory evaluation and consumer surveys were conducted on barley bread and similar breads without barley. The barley bread had its own characteristics and received generally good reviews. Barley malt was produced and then used as a raw material in brewing. It was possible to produce beer of satisfactory quality, but the main problem with the malt production was the low germination rate of the barley. Draft quality requirements for Icelandic barley for the production of baked goods and barley malt were compiled.

The project “Increased value of Icelandic barley” was carried out during the years 2006 to 2008 in cooperation between Matis ohf, Agricultural University of Iceland, barley producers and food manufacturers. Nutrients, contaminants and microbes were measured in Icelandic barley. The water soluble dietary fiber, beta-glucan, was of special interest. The safety of Icelandic barley was sufficient according to measurements of contaminants and microbes. Barley was tested for bread baking and the result was that Icelandic barley can be used for bread making. Breads with and without barley were tested by sensory evaluation and consumer testing. Barley breads had special sensory properties and were well accepted. Malt was produced from Icelandic barley and used for production of beer. The beer was of good quality but the main problem with the malt production was low proportion of sprouting barley. Quality criteria were drafted for Icelandic barley for production of bakery products and malt.

View report

Reports

Fungicides and the MYCONET project / Mycotoxins and the MYCONET project

Published:

01/12/2008

Authors:

Ólafur Reykdal

Supported by:

SafeFoodEra

Contact

Ólafur Reykdal

Project Manager

olafur.reykdal@matis.is

Fungicides and the MYCONET project / Mycotoxins and the MYCONET project

Mycotoxins are many substances that can be formed in some types of fungi. Fungicides can have a variety of harmful effects on humans and animals. All available information on fungal toxins in food on the Icelandic market was compiled. Research lacks the formation of fungal toxins in the Icelandic environment, but it is likely that some of the substances are not formed in fields in this country due to low ambient temperatures. The MYCONET project was a European network project on fungal toxins in wheat for food and feed production. A system was developed to assess the emerging risk of fungal toxins, in particular the substances formed in Fusarium fungi. A special survey was conducted on the needs of regulators, companies and farmers for information on fungal toxins. Evidence of antifungal risk was examined and ranked by importance. The so-called Delphi method was used for this. Detailed information was then obtained on the most important clues. Models were developed to predict the presence of fungal toxins based on evidence of emerging risks.

Mycotoxins are a varied group of contaminants that can be formed in molds. They can be harmful to humans and animals. Information about mycotoxins in foods on the Icelandic market was collected. Research on mycotoxins in Iceland have been limited but it is likely that some of the mycotoxins do not form in open fields because of low temperature. The MYCONET project was a European network of information sources for the identification of emerging mycotoxins in wheat-based supply chains. Main emphasis was on mycotoxins produced by Fusarium spp. The needs of stakeholders and other end users (risk managers) were investigated. The most important indicators for emerging mycotoxins were identified together with evaluation of their relative importance by the Delphi method. Information sources on these key indicators were evaluated. Finally, an information model was developed to predict emerging mycotoxin risk from indicators and information sources.

View report

Reports

A brief summary of processing fish proteins

Published:

01/11/2008

Authors:

Arnljótur B. Bergsson, Margrét Geirsdóttir, Rósa Jónsdóttir, Þóra Valsdóttir, Hörður G. Kristinsson, Guðjón Þorkelsson

Supported by:

Rannís Technology Development Fund

Contact

Margrét Geirsdóttir

Project Manager

mg@matis.is

A brief summary of processing fish proteins

Oxidation is an important issue in protein processing. The report is a summary with a selection of processing parameters and properties of fish proteins and at the end of the report you can find suggestions regarding the effect of processing variables on the properties of the proteins. The report contains a draft risk factor analysis with the quality factors of protein, isolate and hydrolyzate processing.

Oxidation is high profile topic in protein processing. This report is a summary on the influence of process and a selection of process parameters and properties, quality and yield of fish proteins, isolates and hydrolysates and it includes suggestions regarding the effect of processing parameters on these protein properties. The report lists up a draft for hazard analysis of quality parameters in protein, isolate, and hydrolyzate processing.

The report is closed for 2 years

View report

Reports

Fishing, sorting, processing and markets for mackerel caught by pelagic vessels; collection and analysis of fishing / Fishing, grading, pre-processing, processing and marketing of mackerel products catches by pelagic vessels; collecting and analyzing samples.

Published:

01/11/2008

Authors:

Ragnheiður Sveinþórsdóttir

Supported by:

AVS

Fishing, sorting, processing and markets for mackerel caught by pelagic vessels; collection and analysis of fishing / Fishing, grading, pre-processing, processing and marketing of mackerel products catches by pelagic vessels; collecting and analyzing samples.

The aim of this project is to study the fishing of pelagic fishing vessels for mackerel in Icelandic waters, make formal measurements of the fish, come up with solutions on how to sort the mackerel from other fish on board and how to process it in freezer vessels. The equipment options necessary for the processing will be analyzed, and markets for mackerel caught in Icelandic waters will also be explored according to the seasons. In this section, the collection and analysis of mackerel samples collected in the summer of 2008 was reported. The first results of the project are presented in terms of size, weight, head length, height and width, sex, fat, water and dry matter content of the samples.

The objective of this project is to study mackerel fishing on Icelandic fishing grounds, perform geometrical measurements on the fish, find the best solution for grading the mackerel by size and species on board and how to process it in freezer vessels. Part of this will be to analyze what kind of technology is necessary for processing the mackerel. Market analysis will be carried out for mackerel caught on Icelandic fishing ground during the summer. In this report results from sampling during the summer 2008 are presented.

View report

Reports

Possibilities for the production of natural zooplankton for the first feeding of marine larvae

Published:

01/10/2008

Authors:

Jónína Þ. Jóhannsdóttir, Rannveig Björnsdóttir

Supported by:

Verkefnasjóður Sjávarútvegsins / Project fund of the Ministry of Fisheries

Possibilities for the production of natural zooplankton for the first feeding of marine larvae

The overall goal of the project is to make an assessment of the possibilities of producing natural zooplankton for use in the early stages of aquaculture in Iceland. The quality and supply of larvae is one of the main problems in aquaculture today. The larvae of most marine fish need live prey when the pre-nutrition of the peritoneum is exhausted, in which case the supply of live feed animals is necessary until the larvae begin to absorb dry food. Domestic farms have primarily used rotifers and artemia that need to be bought from abroad and bred in the farms. There is a lack of the right composition of nutrients in these feed animals compared to zooplankton, which is the natural food of marine fish larvae, and research shows that the use of zooplankton provides increased yields and improved larval growth. The supply of natural zooplankton is seasonal, but the cultivation of various species has been tried in several parts of the world with good results. The results of research indicate that it is possible to cultivate various types of crayfish in sufficient quantities for production for juvenile farms. Many species of plankton are found in the marine ecosystem by the land that could be suitable for aquaculture, such as redfish, A. longiremis and Oithona spp. It is planned to apply for a research grant to the fund for the installation of facilities and experiments with the cultivation of selected species (s) of zooplankton.

The main goal of this project was to evaluate the potential for production of natural zooplankton for production of marine fish larvae in Iceland. Satisfactory quality and survival of larvae are one of the main problems in marine aquaculture. Marine larvae are fed live zooplankton during the first feeding stages, when the contents of the yolk sac are spent. Icelandic producers of marine fish larvae mainly use imported rotifers and Artemia as live feed. Copepods are the main food source of marine fish larvae in their natural environment and previous research indicate that the nutritional value of rotifers and Artemia is not adequate for successful development of the larvae. Successful growth and survival of larvae have been achieved using natural zooplankton. However, seasonal growth of natural zooplankton species prevents their use in commercial production of fish larvae. Copepods have been successfully cultured and there are indications that copepods can be cultured as feed in the production of marine fish larvae on a commercial scale. Various zooplankton species are found in the Icelandic marine ecosystem and that may be ideal candidates for culturing eg Calanus finmarchicus, A. longiremis and Oithona spp. As a next step, we will apply for funding of a larger project where the aim is to develop experimental facilities and carry out experimental cultures of selected species.

View report

Reports

Lífríki í kalkríkum hverum á Ölkelduháls / Microbial ecology of calcium rich hot springs at Ölkelduháls geothermal area

Published:

01/10/2008

Authors:

Sólveig K. Pétursdóttir, Snædís Björnsdóttir, Alexandra Klonowski, Sólveig Ólafsdóttir, Guðmundur Óli Hreggviðsson

Supported by:

The Environmental and Energy Research Fund of Orkuveita Reykjavíkur

Contact

Alexandra María Klonowski

Project Manager

alex@matis.is

Lífríki í kalkríkum hverum á Ölkelduháls / Microbial ecology of calcium rich hot springs at Ölkelduháls geothermal area

The ecology of calcareous hot springs is little studied. This study involved analyzing the ecosystem in calcareous hot springs at Ölkelduháls and assessing whether it had a special position compared to the ecosystem of other hot springs in the same area with the same temperature and acidity. Bacteria were isolated from thermal samples by conventional culture methods. Genetic analysis methods were used to analyze the species composition. Many species found in samples from calcareous hot springs are also found in other hot springs. It is noteworthy, however, that species within the Aquificae party were not found in the samples, but they are very common in hot springs and widely prevalent. Elemental measurements showed differences in the concentration of sulfur, iron, carbon and arsenic in calcareous water and other hot springs, which may be an explanation for this. Cultivated methods identified mainly known bacterial species of the genera Thermus and Bacillus. One new species of the Meiothermus genus was isolated. Using genetic analysis methods, 195 true bacterial clones were obtained from calcareous hot springs, which were classified into 60 species based on 98% affinity. These 60 species are spread over nine camps. The species found in the samples were the same between the hot springs, but also unique to the sample from which they came. No ancient bacteria were found in the samples. Biodiversity in samples from calcareous hot springs at Ölkelduháls was slightly higher than comparable values from hot springs with similar properties in the same area. The high proportion of unknown species and genera in samples taken in calcareous hot springs at Ölkelduháls is noteworthy. Of the 60 species found in the samples, a sufficiently close relative of the same species was found in 25 cases. The other 35 species were so closely related to close relatives that they could not be classified except into genera, tribes, clans, or families. Ecosystems in calcareous hot springs at Ölkelduháls must therefore be considered very special.

The ecology of calcium rich hot springs is not well documented. In this study an attempt was made to estimate if microbial species composition in calcium rich hot springs in Ölkelduháls in Iceland was special compared to species composition in other hot springs with similar temperature and pH in the same geothermal area. Isolation methods as well as culture independent methods were used to analyze species composition in the samples. Many species found in the calcium rich hot springs are also found in other hot springs. It is noteworthy that Aquificae species were totally absent in samples from calcium rich hot springs, but these species were abundant and dominating in other hot spring samples. Elemental analysis of hot spring water revealed a difference in the concentration of sulfur, iron, carbon and arsenate between calcium rich hot springs and other hot springs in the area. Known species of Thermus and Bacillus genera were isolated from the samples. A novel Meiothermus species was isolated. Approximately 60 species belonging to nine phyla were identified in the samples using culture independent methods. The species identified in the calcium rich samples were identical between samples but also unique for the sample investigated. No archaea were detected in the samples. Biodiversity calculated for the samples from calcium rich hot springs was slightly higher than in samples from other hot springs. A high ratio of unknown species and genera in the samples from calcium rich hot springs in Ölkelduháls is remarkable. Of the total of 60 species identified only 25 had a close relative from the same species according to Genbank. The remaining 35 species were only distantly related to their closest relative and could only be classified to genera, families, orders or classes. Thus, the ecology of calcium rich hot springs appears to be quite unique.

View report

Reports

Genetic analysis services for Icelandic commercial stocks

Published:

01/10/2008

Authors:

Sigríður Hjörleifsdóttir

Supported by:

Agricultural Productivity Fund

Genetic analysis services for Icelandic commercial stocks

Development of a genetic analysis kit for cows with 11 repeated microsatellite markers (BM1824, BM2113, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH10, ETH225, TGLA53, E18). Prokaria offers services and participation in research projects on cow genetics. The development of a genetic kit for sheep has begun. It contains 11 genetic markers (CSRD0247, HSC, INRA0063, MAF0214, OarAE0129, OarCP0049, OarFCB0011, OarFCB0304, INRA0005, INRA0023, OaRFCB0020). The development work has come a long way.

A genotyping protocol for cows with 11 microsatellite markers (BM1824, BM2113, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH10, ETH225, TGLA53, ETH3) has been developed. Prokaria offers genotyping service and participation in research projects on cow genetics. A genotyping protocol was started for 11 microsatellite markers for sheep (CSRD0247, HSC, INRA0063, MAF0214, OarAE0129, OarCP0049, OarFCB0011, OarFCB0304, INRA0005, INRA0023, OaRFCB0020). The final optimizations of conditions are not finished.

View report

Reports

Effect of modified atmosphere packaging (MAP) and superchilling on the shelf life of fresh cod (Gadus morhua) loins of different degrees of freshness at packaging

Published:

01/09/2008

Authors:

María Guðjónsdóttir, Hannes Magnússon, Kolbrún Sveinsdóttir, Björn Margeirsson, Hélène L. Lauzon, Eyjólfur Reynisson, Emilía Martinsdóttir

Supported by:

AVS Research Fund, Rannís Technology Development Fund

Contact

Kolbrún Sveinsdóttir

Project Manager

kolbrun.sveinsdottir@matis.is

Effect of modified atmosphere packaging (MAP) and superchilling on the shelf life of fresh cod (Gadus morhua) loins of different degrees of freshness at packaging

The purpose of this experiment was to evaluate the effect of aerated packaging (MAP) and supercooling on the quality changes and shelf life of cod pieces of fresh raw material that was processed and packaged after 2 and 7 days of fishing. The experiment was carried out in collaboration with Samherji, Dalvík and Norðlenska, Akureyri in October and November 2007. The fish was stored whole in ice until packing at -0.2 ± 0.1 ° C (2 days from fishing) and -0.2 ± 0.2 ° C (7 days from fishing). The neck pieces were cut in half and then packed (350-550 g) in an airtight container. The composition of the gas mixture was as follows: 50% CO2, 5% O2 and 45% N2. Packaged cod pieces were stored in cold storage at -0.6 ± 1.4 ° C and samples were taken over a 3-week storage period and evaluated by sensory evaluation, microbial and chemical measurements. The age of the raw material during packaging had a clear effect on the sensory evaluation of the pieces. Packing after 2 days led to a prolongation of the freshness symptoms in front of storage. In addition, signs of damage appeared much later than in bites packed 7 days after fishing. The shelf life of pieces after packing on day 7 can be roughly estimated at 4-8 days, but at least 19 days in pieces packed on day 2. This short shelf life of pieces from day 7 can be explained by the development of microbial flora and the formation of volatile pesticides as well as the temperature profile of whole fish before packaging. The effect of different packing dates had a significant effect on the microflora. Thus, the total number of microorganisms was much smaller in pieces packed after 2 days than on day 7 (log 3.7 vs 5.4 / g). This difference can largely be attributed to the varying number of Photobacterium phosphoreum (Pp) in the flesh immediately after packing, but it was not detected during the previous packing on the 3rd day of the experiment (below log 1.3 / g) and on day 8 the number was only log 2.4 / g. On that day, the number of Pp was 1000x higher in pieces packed on day 7 and they were predominant throughout the storage period in this group. On day 8, the number of other pests (H2S-producing bacteria and pseudomonads) was somewhat higher (Δ log 0.6-0.7 / g) in this group compared to the group packed on day 2. These results confirm that P. phosphoreum is one of the main damaging microorganisms in gas-packed cod pieces but also in chilled, whole cod. The results of TVB-N and TMA measurements were in good agreement with microbial measurements, but especially Pp. Low Field Nuclear Magnetic Resonance (LF-NMR) technology was used to measure relaxation times in samples over the storage period. Significantly higher "relaxation times" were measured in chunks packed after 7 days of fishing than in chunks packed 2 days after fishing. It indicates greater binding of water molecules to the environment in the 7-day bites. This is in line with the generally higher water resistance and water content of those samples over the storage period. Overall, the results show the importance of using the freshest ingredients for MA packaging, thus ensuring higher quality and longer shelf life, which should result in a higher price for the product.

The aim of this study was to evaluate the effect of modified atmosphere packaging (MAP) and superchilling on the shelf life and quality changes of fresh loins prepared from Atlantic cod (Gadus morhua) of different freshness, ie processed 2 or 7 days post catch. The study was performed in cooperation with Samherji (Dalvík, Iceland) and Norðlenska (Akureyri) in October and November 2007. The average fish temperature during storage prior to processing on days 2 and 7 was -0.2 ± 0.1 ° C and -0.2 ± 0.2 ° C, respectively. Cod loins (350-550 g) were packed in trays under modified atmosphere (50% CO2 / 5% O2 / 45% N2), stored at -0.6 ± 1.4 ° C and sampled regularly over a three-week period for sensory, microbiological and chemical analyzes . The results show that the raw material freshness clearly influenced the sensory characteristics of packed loins. Processing 2 days post catch resulted in more prominent freshness sensory characteristics the first days of storage. In addition, sensory indicators of spoilage became evident much later compared to MApacked fillets from raw material processed 5 days later. The expected shelf life of the MA-packed cod loins could be roughly calculated as 4-8 days when processed 7 days post catch, but at least 19 days when the cod was processed 2 days post catch. This reduced shelf life of MAP products processed at a later stage was also explained by the temperature profile of the whole fish prior to processing, microbial development and volatile amine production observed. In fact, the day of packaging had a major effect on the microflora development, with lower total viable counts (TVC) in loins processed earlier in relation to time from catch (log 3.7 vs 5.4 / g). This difference could be linked to large variations in levels of Photobacterium phosphoreum (Pp) in the flesh at processing times, being below detection (log 1.3 / g) 2 days post catch but found to increase to log 2.4 / g in early processed loins 6 days later, in contrast to 1000-fold higher Pp levels in loins processed later. Pp was found to quickly dominate the microflora of loins processed 7 days post catch. Similarly, slightly higher levels (Δ log 0.6- 0.7 / g) of other spoilage bacteria, H2S-producing bacteria and pseudomonads, were found 8 days post catch in loins processed later. These results confirm that P. phosphoreum is one of the main spoilage organisms in cod, unprocessed as MA-processed. TVB-N and TMA production corresponded well to the microbial development, especially counts of P. phosphoreum. Low Field Nuclear Magnetic Resonance (LF-NMR) was used to measure the relaxation times of the samples during storage. The samples packed 7 days after catch showed significantly higher relaxation times than samples packed 2 days after catch. This indicates stronger bindings of the water molecules to their environment in samples packed at a later stage. This is in agreement with the generally higher water holding capacity and water content in the samples during storage. Finally, the results demonstrated that delaying processing of raw material is undesirable if it is intended to be MA-packed and sold as more valuable products.

View report

Reports

Fishing, sorting, processing and markets for mackerel caught by pelagic vessels; Needs analysis and processing processes / Fishing, grading, pre-processing, processing and marketing of mackerel products catches by pelagic vessels; requirements analysis and manufacturing processing

Published:

01/09/2008

Authors:

Ragnheiður Sveinþórsdóttir

Supported by:

AVS

Fishing, sorting, processing and markets for mackerel caught by pelagic vessels; Needs analysis and processing processes / Fishing, grading, pre-processing, processing and marketing of mackerel products catches by pelagic vessels; requirements analysis and manufacturing processing

The aim of this project is to study the fishing of pelagic fishing vessels for mackerel in Icelandic waters, make formal measurements, come up with solutions on how to sort the mackerel from other fish on board and how to process it in freezer vessels. The equipment options necessary for the processing will be analyzed, and markets for mackerel caught in Icelandic waters will also be explored according to the seasons. In this part, a needs analysis was made of what is needed to process mackerel on board vessels that catch it during the summer in Icelandic waters. Processing processes on two freezer vessels were also recorded.

The objective of this project is to examine mackerel fishing on Icelandic fishing grounds, perform geometrical measurements, find the best solution for grading the mackerel by size and species on board and how to process it in freezer vessels. Analyze what kind of technology is necessary. Moreover, to examine the markets for mackerel caught on Icelandic fishing ground during the summer. In this part requirements analysis was carried out about what is needed to process mackerel on board vessels caught during summertime on Icelandic fishing grounds. Furthermore, manufacturing processing methods aboard two freezer vessels were documented.

View report

Reports

Leit að bætibakteríum / Searching for putative probionts in the production system of halibut larvae

Published:

01/09/2008

Authors:

Jónína Þ. Jóhannsdóttir, Eyrún Gígja Káradóttir (MS student), María Pétursdóttir, Jennifer Coe, Heiðdís Smáradóttir, Rannveig Björnsdóttir

Supported by:

Tækniþróunarsjóður Rannís (2006-2008) / Technology Development Fund of Rannís, the Icelandic Center for Research (2006-2008)

Leit að bætibakteríum / Searching for putative probionts in the production system of halibut larvae

The overall goal of the project is to improve the survival and quality of halibut larvae in starter feeding using supplementary bacteria. In the composition of supplementary bacteria for fish, the breeding of warm-water species has often been considered, and the bacterial species that have been used have proved to have a poor foothold in the environmental conditions involved in the breeding of cold-water species, such as halibut. This project seeks out and identifies bacteria that are prevalent in halibut larvae from breeding units that have been successful in terms of larval performance and metamorphosis. Studies were performed on the properties of isolated bacterial strains in terms of growth inhibitory effects on known pathogens for fish as well as predominant bacterial species from halibut larvae in breeding units where the performance and quality of larvae were below average. The predominant bacteria were isolated from larvae in all breeding units of Fiskey hf. in two different periods in addition to which samples were taken from juveniles in export size. The results of studies on the growth inhibitory effect of isolated strains revealed 18 bacterial strains that were found to inhibit the growth of known pathogens and / or bacterial strains that had been isolated from the larval rearing environment. Sequencing results showed a good correlation with 6 different bacterial species. Subsequently, it will be treated with a selected mixture of additive bacteria in the early stages of halibut farming.

The overall aim of this project is to use probiotic bacteria to promote increased survival of halibut larvae during first feeding. Previous studies indicated that the microbial load of larvae and their environment represents a problem and the objective of this project was to search for possible candidates for probiotic bacteria to promote survival and growth of larvae use during the first and most sensitive phase of production. Potential probiotic strains were selected on the basis of dominance in the gut of larvae from production units with successful growth, development and survival. The growth inhibiting activity was tested against known fish pathogens as well as bacteria dominating the intestinal community of larvae from production units with poor overall success. We isolated dominating bacteria in the gut of larvae from all production units of two different spawning groups at Fiskey Ltd. and also from export-size fingerlings. Growth inhibition studies revealed 18 bacterial isolates that inhibited growth of known fish pathogens and / or dominating bacterial isolates from the gut of larvae of an overall poor quality. 16S rRNA sequencing revealed a reasonable correlation to 6 bacterial species and presently. As a next step, halibut eggs and larvae will be treated with selected strains to test their potential as probionts during the first production stages of halibut aquaculture.

View report
EN