This report is closed.
Tag: Shelf life
This report is closed.
View report
The project Challenges in packing vegetables was funded by the Swedish Food Fund in 2021. The aim of the project was to provide an overview of options for packaging vegetables and point out upcoming new packaging materials that can replace plastic. Furthermore, the project was intended to provide an overview of the impact of packaging on the environment and people's health, and to investigate the shelf life and quality of vegetables for different packaging under Icelandic conditions.
The project's contribution will be to make the latest knowledge on vegetable packaging available to interested parties in Iceland. The project has built up knowledge that will be shared with the vegetable sector. It will be possible to make decisions about the best solutions based on product quality and environmental protection. The project was carried out in collaboration with the Department of Horticultural Farmers at the Farmers' Association of Iceland and the Gardeners' Sales Association. Part of the project was work on the assessment of the carbon footprint of several horticultural farms, but the results are presented in another forum. Although this report focuses specifically on vegetables, the topics have general appeal and those planning to package other types of food should benefit from the report. It is hoped that the project will lead to progress in food packaging and pave the way for new types of packaging materials.
View report
The keeping quality of chilled sea urchin roe and whole urchins
Sea urchins (Strongylocentrotus droebachiensis) are common off the coast of Iceland and are caught in small quantities and exported mainly as whole pots. Landings in 2015 were 280 tonnes. There are markets in Europe and Asia for sea urchin roe fresh, frozen or otherwise processed. In this study, the shelf life of fresh and pasteurized eggs stored at 0-2 ° C was assessed. The effects of freezing, both slow freezing (blow freezing at -24 ° C) and rapid freezing (nitrogen freezing) were studied as well as dextrin and alum treatment. It was also estimated how long the pots kept alive at 3-4 ° C were kept alive. The sea urchins were caught in Breiðafjörður with a plow and landed at Þórishólmur in Stykkishólmur where they were processed. Some of the sea urchins were opened, the eggs removed, cleaned and used in the experiments. Whole sea urchins were packed in plastic boxes in a similar way as when exported. The freshness characteristics of fresh sea urchin roe are the smell and taste of the sea, the smell of egg yolk and the taste and sweetness of the sea. The taste of pasteurized eggs was similar to that of fresh eggs but milder. In general, over time, the sweet, sea and egg yolk taste faded, but the metallic, kelp and chemical characteristics increased. The shelf life of fresh sea urchin eggs is limited by changes in texture - eggs dissolve and become unpalatable - and a shelf life of 0-2 ° C can be expected for one to four days. Sterilized eggs kept their freshness characteristics for at least 14 days and had a shelf life of 22 days or more at 0-2 ° C without any changes in texture. The freezing of fresh sea urchin eggs resulted in them becoming mushy during translation and there did not appear to be a difference between slow-freezing or rapid-freezing. After three months of storage at -24 ° C, thawed eggs developed a strong odor which rendered them unfit for consumption. Freezing pasteurized eggs had little or no effect on their texture or taste; however, after six months of cold storage, evidence of maladaptation was found. Aluminum treatment resulted in a strong odor that rendered the eggs unfit for consumption. The preservatives sorbate and benzoate resulted in a strong taste in the eggs and a metallic aftertaste, but treatment with dextrin did not appear to have much effect on sensory properties. All whole sea urchins were alive after 5 days from fishing but on day 9 one of the 18 vessels was dead but no damage was found. It can be assumed that a whole sea urchin stays alive at 3-4 ° C between five and nine days after fishing.
The green sea urchin (Strongylocentrotus droebachiensis) is commonly found in Iceland and is currently fished and exported mainly as whole urchins. The catch in 2015 was 280 tons. There are markets both in Europe and Asia for urchin roe, fresh, frozen or processed. In this study the shelf-life of fresh and pasteurized sea urchin roe, stored at 0-2 ° C was evaluated. The effect of freezing (blast freezing and freezing in liquid nitrogen), treatment with dextrin and alum was evaluated on both fresh and pasteurized roe. Further, the keeping quality of whole (live) sea urchins at 3-4 ° C was evaluated. The sea urchins were caught in the Breidafjordur area using a modified dredge, landed at Thorisholmi in Stykkishólmur, cleaned and the whole live sea urchin were packed in the same manner as that for export. Part of the sea urchins was opened up and the roe removed, cleaned and used for the experimental trial. The freshness characteristics of fresh sea urchin roe were found to be sea odor & flavor, egg yolk odor & flavor and sweet flavor. The flavor was similar but milder in pasteurized beet. In general, with time the sweet, egg yolk and sea flavors seemed to decrease but metallic, seaweed and chemical flavors increased. The shelf-life of fresh roe is limited by changes in texture - the roe liquefies - as indicated by sensory evaluation and can be expected to be between one and four days at 0-2 ° C. Pasteurised roe had a freshness period of at least 14 days and a shelf life of 22 days or more at 0-2 ° C, with no detectable changes in appearance or texture during that time. Freezing of fresh roe resulted in a porridge like texture at thawing and no difference was seen between freezing methods, blast freezing and liquid nitrogen freezing. After three months storage at -24 ° C frozen roe had developed a strong off-flavor and were considered unfit for consumption by the panelists. Freezing of pasteurized roe did not change the texture or flavor of the roe; however, after 6 months of freezer storage, the roe had a trace of an off-flavor. Treatment with alum gave all samples a strong off-flavor which made them unfit for consumption. Preservatives (a mix of sorbate and benzoate) gave a strong flavor and a metallic aftertaste but treatments with dextrin did not have a considerable effect on sensory characteristics. All whole sea urchins were alive after 5 days from catch, but on day 9 from catch, one urchin out of 18 had an open mouth but no spoilage odor was detected. It is estimated that the shelf life of live sea urchins is between five and nine days from catch at 3-4 ° C.
View report
Sub chilling of fish
The aim of the project was to utilize the knowledge of supercooling of fish that has been developed in laboratories in recent decades; industrialize the concept and develop methods and equipment to control the cooling. It is important to cool the raw material below the freezing point or just below the temperature at which the first ice crystals form in the fish species in question, fast enough so that large crystals do not form in the muscles and cause cell damage. It is important to control the cooling correctly as well as to maintain a supercooled condition during storage and transport, but fluctuations in temperature can cause quality deterioration. The results of research show that ice-free transport and storage of super-chilled fish is a realistic solution that reduces the cost of fishing and processing as well as reducing the cost of transport and significantly reducing the footprint of fresh fish production. Fresh salmon has been transported ice-free but super-chilled for shorter and longer distances and stored for a week before processing with excellent results. In connection with the project, supercooling has been used on a large scale in Sauðárkrókur, where the trawler Málmey SK 1 has landed over 15 thousand tonnes in the past two years of supercooled catch and thus not used ice on board or for storage for production in fish processing.
The project objective was to utilize knowledge of sub chilling of fish developed in laboratories for the past decades; and to industrialize the concept and to develop methods and means for centralizing the process. The control of the chilling process is important, to chill raw material sufficiently without freeze out more than 20% of its water and without developing large ice crystals in the muscles. It is also important to keep storage temperature under control and stable and for the same reason temperature fluctuation can cause growth of ice crystals in the muscle. Based on results obtained in present project it can be concluded that sub chilling provides opportunities to use ice-free value chain for fresh fish, lowering cost of production, logistic and considerably the carbon footprint for the final products. Fresh salmon without any external refrigerant (ice) has been transported for long distance, by trucks and airplanes, and stored for long time with acceptable results. The trawler used in this project has landed over 15 thousand tonnes of sub chilled fish for the last two years without using any ice for chilling and storage. The fish is stored in the fish plant and processed without using any ice preservation.
View report
The effects of different packaging solutions on the shelf life of fresh cod loins - drainage holes, cooling media and plastic bags / The effect of different packaging solutions on the shelf life of fresh cod necks
Boys' clothes, refrigerants and plastic bags
The aim of the study was to investigate the effect of different foam plastic boxes (with and without boys), the amount of coolant and plastic bags compared to plastic film in boxes on the quality of fresh cod necks. The age of the raw material during processing was about two days. Five different experimental groups were prepared and stored at -1.7 ° C for five days and subsequently stored at 2 ° C for 9 days, or the remainder of the storage period. Sensory assessment (Torry freshness assessment) and drip / water loss during storage were assessed 1, 7, 9, 12 and 14 days after packing. The results indicated that a neck piece packed under plastic wrap in a foam box without a boy and with the smallest amount (250 g) of refrigerant in the box was damaged significantly faster compared to other experimental groups. The longest shelf life from packing (12 days) was measured for products that were packed in a foam plastic box without boys, but were in a plastic bag inside the box and with a larger amount (750 g) of refrigerant (ice) outside the plastic bag. The results underlined the importance of maintaining a low and constant temperature throughout the storage period.
The aim of the study was to explore the effects of different expanded polystyrene (EPS) boxes (with and without drainage holes), cooling media and plastic bags compared to plastic films inside the boxes on the shelf life of fresh cod loins. The fish was caught two days before processing. Five experimental groups were prepared and stored at around - 1.7 ° C for five days followed by subsequent storage at around 2 ° C for nine days. Sensory (Torry score) and drip loss evaluations were performed 1, 7, 9, 12 and 14 days post packaging. The results indicated that loins packed under a plastic film in EPS boxes (without drainage holes) and with the lowest amount (250 g) of cooling medium spoiled faster compared with the other experimental groups. The longest shelf life from packaging (12 days) was obtained for loins packed in EPS boxes inside a plastic bag and covered with a larger amount (750 g) of ice. Furthermore, the sensory results were in accordance with the temperature profiles of the experimental groups, stating the advantages of a low and stable storage temperature.
View report
Comparison of packing of fresh fish products in boxes and pots for export by ship / Packing of fresh fish products in boxes and tubs intended for sea transport
The aim of the study was to find the best and most cost-effective method of packing fresh fish products for shipping with a view to maximizing the shelf life of a product, which is one of the key factors in the marketing of fresh fish products. Experiments were carried out with the transport of fresh fish products in containers with ice scrapers and compared with the transport in foam plastic boxes with regard to temperature control, product quality and transport costs. Different product groups were compared that were packed in different packaging and stored at different storage temperatures. The purpose of these experiments was to simulate the environmental conditions during the transport of fresh fish products, with a view to evaluating the effect of pre-cooling before packaging and packaging methods on the shelf life of the products. The results clearly indicate that refrigeration of products before packaging as well as low and stable storage temperatures are among the most important factors that increase the shelf life of fresh fish products. Different packaging solutions also affected the shelf life of fresh fish products, although the effect was not as decisive as the effect of temperature. The results indicate an increased likelihood of longer shelf life if fresh fish products are packed in tanks with sub-chilled sludge compared to traditional packaging in a foam plastic box with ice. To estimate the amount of ice scraper required to maintain an acceptable temperature, a heat transfer model was developed. An economic analysis of different packaging and transport was carried out in the project and this work shows significant savings with the use of tanks for transporting fresh fish products in comparison with foam plastic boxes. Pots can replace a foam plastic box to a considerable extent and be a cost-effective option for some companies. The economic analysis showed that larger parties could take advantage of this method, as they can fill entire containers for export. But the method is no less useful for smaller processes, which do not have the capacity to make large investments in equipment to ensure adequate cooling for the packaging of products for export of fresh raw materials. The results are a good contribution to discussions about fresh fish products in foreign markets.
The goal of the study was to find the best and most efficient method of packaging fresh fish for sea transport with the aim of maximizing the storage life of the product, which is a key element in the marketing of fresh fish. Experiments were made with the transport of fresh fish in tubs with slurry ice and compared with transport in expanded polystyrene boxes with regard to temperature control, product quality and shipping cost. Different product groups were compared, using different temperature conditions and packing methods to find the best outcome for fresh fish quality and storage life. Experimental results clearly indicate that the pre ‐ cooling for packaging and low and stable storage temperature play a major factor to maximize storage life of fresh fish products. Different packaging solutions are also a factor, though the effect was not as dramatic as the effects of temperature. The results indicate an increased likelihood of extended shelf life if fresh fish is packed in a tub with a slurry ice compared to traditional packaging in expanded polystyrene boxes with ice. In order to estimate the necessary amount of slurry ice to maintain acceptable temperature, a thermal model was developed. Economic analysis of different packaging and transport was also carried out and the results showed substantial savings with the use of tubs for the transport of fresh fish products in comparison with the styrofoam boxes.
View report
Effect of salt content in slurry ice on quality of fresh and thawed Atlantic mackerel (Scomber scombrus)
The aim of the experiment was to improve methods of cooling and storage of fresh produce in order to improve the quality of frozen mackerel products. A comparison was made of cooling in conventional ice scrapers and salt-improved ice scrapers. By adding salt to the ice scraper, it was hoped that the temperature of fresh mackerel could be lowered and thus its quality maintained longer. The fresh mackerel was stored for up to seven days after fishing. Another aim of the study was to investigate whether this different cooling of fresh mackerel affects the deterioration of the quality of frozen mackerel products. The results showed that the temperature distribution in the pots was related to salt concentration as lower temperatures were obtained in pots with higher salt content (3.3%). On the other hand, the cold storage had a much greater effect on the quality factors such as the freshness and release of the mackerel products compared to the effect of pre-cooling, as the effect of different salt concentrations in the ice scraper was negligible in terms of these quality factors.
The present experiment is part of the research project - Increased value of mackerel through systematic chilling. The aim of this study was to improve methods of chilling and storing of fresh products in order to obtain better quality of frozen mackerel products. This project was carried out to develop slurry ice mixture with addition of extra salt, with the intention of temperature decrease during chill storage up to seven days after catch. Secondary objective of this research was to investigate if different chilling condition of fresh fish has an effect on the quality assignment of long-term frozen mackerel products. The results showed that temperature distribution in the tubs was correlated to the salt concentration where lower temperature was obtained in the tub with higher salt content (3.3%). Furthermore, freshness, gaping and peritoneum deterioration have been affected by the storage process but not by different salt concentration in slurry ice during chilled storage. Due to high quality variation within the same group of the mackerel is needed to conduct more methods for quality evaluation such as oxidation analysis and sensory analysis.
View report
Comparison of packaging methods for bulk storage of fresh cod loins / Comparison of packaging solutions in foam packaging for storage of cod products
The main objective of the experiment was to compare packaging solutions for fish in terms of quality deterioration and product temperature during storage, which is similar to the conditions for export and distribution. The objectives were to compare cold storage of products packed (1) in 5-kg units in (H1) ship or (H2) air boxes; (2) in 3 ‐ kg units in (H3) airbags compared to H2; (3) with CO2 mats (H4) to reduce microbial growth in 5 kg units stored under 93% vacuum in EPS boxes. The results show that the lifespan of H1 was shorter, but there were smaller quality changes among the other groups. However, the freshness was longest and the lifespan of H4, which compares with slower TVB-N and TMA formation and microbial growth due to CO2 formation as well as lower product temperature. The fastest microbial growth was measured in H3 after 8 days of storage. There was no significant difference between the groups in terms of TVB-N and TMA values, which were highest in H1 and H3. Drip was at least half as high in H4 as in other groups.
The overall aim of the storage study was to compare the quality deterioration and temperature profile of cod loins differently packaged in expanded polystyrene boxes and stored under conditions mimicking distribution. The purpose of the study was threefold; to compare chilled storage (1) or 5 ‐ kg bulk fish packaged in sea freight (H1) or air freight (H2) boxes; (2) of 3 ‐ kg (H3) or 5 ‐ kg (H2) bulk fish packaged in air freight boxes; (3) with the use of CO2 ‐ emitting pads (H4) as a mean to slow down bacterial deterioration of cod loins (5 kg) packaged under partial vacuum and stored in EPS boxes. The results clearly indicated that group H1 had a shorter shelf life as it developed spoilage characteristics faster than the other three groups. Less difference was seen between the remaining three groups but group H4 retained its freshness slightly longer than groups H2 and H3. This can be explained by the CO2 present and the lower mean product temperature. More advanced microbial spoilage was detected in H3 group compared to H2, as shown by higher microbial counts in H3 being though insignificant. No significant differences were observed after 8 ‐ day storage in TVB ‐ N and TMA content of the four groups, despite the higher levels measured in H1 and H3. Drip loss was at least two times higher in H4 than the other groups.
Closed Report
View report
Improved utilization of lumpfish
The Ministry of Fisheries and Agriculture's regulation, No. 1083/2010, made it obligatory to bring all grayling catch ashore after 2011. It was therefore necessary to react quickly and find a market for the grayling itself, but only the roe had been harvested and the rest thrown into the sea. . A great deal of entrepreneurship had taken place for several years, and it is worth mentioning the National Association of Small Boat Owners and the export company Triton in that context, which together built up a market for grayling in the Chinese market, with a bang and all. It should be noted that the roe is about 30% by the weight of the grayling, while the whale with the head and tail is about 55%, of which the fillets are only 14% of its total weight. There was a lot of work to be done and it is clear that there is great value in this underutilized fish species and great opportunities would be created in many coastal settlements for the production and export of grayling. At the same time, increased income for fishermen and the fishing industry, as well as the fact that the grayling was now mostly brought ashore, which created a lot of work for production parties. Cutting for the Chinese market is different from the traditional method and requires more complex procedures, but it requires better working conditions that do not exist on board small fishing boats. There was little information on the chemical and nutritional content of grayling, but such information is necessary when marketing products. A detailed report was prepared on the material and raw materials are used in many parts of the country. Shelf life tests were performed on frozen grayling. A conference was held in Patreksfjörður where stakeholders in the fishing, processing and export of grayling were invited to discuss the interests of the industry.
A new regulation from Minister of Fisheries and Agriculture, No. 1083/2010, require returning all lumpfish fished in Iceland, after 2011. A quick action had to be taken to find markets for lumpfish itself, but only the roes which have been processed but the rest of the fish have been discarded into the sea. With entrepreneurial activity for some years now new markets have been developed in China, by the National Association of Small Boat Owners in Iceland in cooperation with the export company Triton. It should be noted that the roes are only about 30% of the total weight of lumpfish, with head and tail about 70% of its total weight. There was much to be done to save value in the lumpfish business and great opportunities for small communities relying on this business and find a market for the lumpfish product and create extra value for stakeholders. Furthermore, increased income for fishermen and fishing communities by creating valuable work by processing the fish at shore. Gutting and trimming the lumpfish for the China market is different from the traditional approach and calls for more sophisticated self-administration, but it requires better working conditions that do not exist on board small fishing boats. Very little information on chemical composition and nutrient value has been available for lumpfish products. An in-depth report on this subject was prepared, using samples from different regions in Iceland. Self ‐ life experiments were prepared by this project. A work shop was held in Patreksfjordur in May 2013, with stakeholders from the lumpfish business participating.