The effect of liquid cooling at processing and different cooling techniques during transport of cod (Gadus morhua) fillets
The purpose of the experiments was to investigate the effect of different refrigeration techniques and the effect of temperature fluctuations on the quality and shelf life of cod fillets. The following cooling technology was investigated: Liquid cooling in brine during processing based on no cooling and the effect of temperature fluctuations during storage compared to a constant temperature (-1 ° C). In addition, the effects of using ice mats and dry ice on the storage of the wrecks were investigated. Temperature changes were monitored by temperature sensors at all levels. Samples were quality assessed by sensory evaluation, microbial and chemical measurements for up to 14 days from fishing (11 days from processing and packaging). Different treatment resulted in different freshness times and shelf life according to sensory evaluation. Groups that were liquid-cooled during processing had a shelf life of about 2-3 days shorter than fillets that were not cooled in this way. The reasons for this can be traced to the fact that the cooling brine contained a considerable amount of microorganisms, including the destructive bacterium Photobacterium phosphoreum, which is a very active producer of trimethylamine (TMA). Comparison of liquid-cooled fillets showed that the use of dry ice prolonged shelf life by 1-2 days compared to ice mats. Storage at -1 ° C did not have a significant effect on freshness time and shelf life compared to fillets where temperature fluctuations were applied according to sensory evaluation. The results of microbial and chemical measurements were consistent with these results.
The aim of the experiment was to investigate the effects of different cooling techniques and temperature fluctuations on the storage life of cod fillets. The following cooling techniques were studied: liquid cooling in brine at plant as compared to no special cooling at processing. The effect of real temperature (RTS) simulation during storage was compared to a steady storage temperature at -1 ° C. Additionally, the influence of using either dry ice or ice packs during storage was studied. The temperature history of each group was studied using temperature loggings. The samples were analyzed with sensory evaluation, microbial and chemical methods for up to 14 days from catch (11 days from packaging). The different treatments of the groups resulted in different lengths of freshness period and maximum shelf life according to sensory evaluation. Liquid cooling resulted in a 2-3 days shorter maximum shelf life than the group that was not receiving liquid cooling. This could be attributed to the fact that the cooling brine carried considerable amounts of microbes including the spoilage bacterium Photobacterium phosphoreum which is an active producer of trimethylamine (TMA). Comparison of the groups receiving liquid cooling showed that dry ice appeared to extend the shelf life of 1-2 days as compared to ice packs. Storage at -1 ° C did not have much influence on the freshness period or maximum shelf life. These results were confirmed by total volatile bases (TVB-N) and TMA analysis and microbial counts.